Deeply Virtual Compton Scattering measured by HERMES

International Workshop on Diffraction in High Energy Physics, Cala Gonone, Sardinia, September 2004

Björn Seitz on behalf of the HERMES Collaboration

From DIS to GPDs

- DIS cross section from forward Compton amplitude via optical theorem
- Hadron described by PDF

(Generalised) Distribution Functions

GPDs in Exclusive Reactions

Deeply Virtual Compton Scattering

hard electro-production

Measuring DVCS Asymmetries

- DVCS BH interference gives direct access to amplitudes
- Beam Charge Asymmetry gives the real part
- Beam Spin Asymmetry gives the imaginary part

$$I = \pm \frac{4\sqrt{2} \operatorname{m} e^{6}}{\operatorname{t} Q \times_{B}} \frac{1}{\sqrt{1 - x_{B}}} \times \underbrace{\cos \phi}_{\sqrt{\epsilon(\epsilon - 1)}} \mathfrak{R} \mathsf{M}^{1,1} - \mathsf{P}_{I} \sin \phi \sqrt{\frac{1 + \epsilon}{\epsilon}} \mathfrak{S} \mathsf{M}^{1,1}}_{\mathrm{H}} \mathsf{M}^{1,1} = \mathsf{F}_{1} \mathcal{H}_{1} + \frac{\mathsf{x}_{B}}{2 - \mathsf{x}_{B}} (\mathsf{F}_{1} + \mathsf{F}_{2}) \tilde{\mathcal{H}}_{1} - \frac{\mathsf{t}}{4\mathsf{M}^{2}} \mathsf{F}_{2} \mathcal{E}_{1}$$

HERMES Spectrometer

Tracking detectors

Current Analysis Strategy

- Spectrometer detects photon and lepton
- missing particle: recoil proton
- identify reaction by missing mass cut
- measure asymmetries with respect to azimuthal angle φ

Getting the imaginary part: Beam Spin Asymmetry

BSA on proton and deuteron

Amplitudes consistent with calculations of Kirchner/Müller hep-ph/0202279

BCA on proton and deuteron

Similarity suggests that incoherent scattering on p in d is the dominant process

Deuteron Target Spin Asymmetry

- first experimental observation of TSA
- sizeable sin(φ) and sin(2φ) contributions
- d data p dominated
- sin(φ) gives access to H̃

 $A_{UL} \propto Im \left[\frac{x}{2-x} \left(F_1 + F_2 \right) \left(\mathcal{H}_1 + \frac{x}{2} \mathcal{E}_1 \right) + F_1 \tilde{\mathcal{H}}_1 + \frac{x}{2-x} \left(\frac{x}{2} F_1 + \frac{\Delta^2}{4M^2} F_2 \right) \mathcal{E}_1 \right] \sin \phi$

Heavy Targets: DVCS on Nuclei

- Holography of nuclei: 3D distributions of quarks and gluons
- A new window to study nuclear degrees of freedom
- Allows to study binding effects in nuclei from a new perspective
- provides new constraints on the nucleus wave functions

Link fundamental and nuclear degrees of freedom !

Heavy Targets: **BSA** on Neon

- Ne acts as scalar target
- sizeable BSA observed, comparable to BSA on p
- comparison to theory requires separation into coherent and incoherent part
- separation into coherent and incoherent difficult (recoiling nucleus not detected)
- study of t-dependence in progress

Summary

- DVCS observed by HERMES on p,d,Ne,(Kr)
- identification by missing mass, resonance contributions included in systematic error
- HERMES measures BeamSpin, BeamCharge and TargetSpin Asymmetries thus accessing the full DVCS amplitude
- These data map GPDs H and \tilde{H}
- Study of kinematical dependencies underway
- Data from transverse target will allow access to E
- more precise data and fine binning in x,t from 2005 on using dedicated recoil detector

HERMES in the future

Recoil Detector surrounding target region

HERMES Recoil detector

What we aim for ...

- improved statistical precision (based on 2 fb⁻¹)
- clean reaction identification
- detector resolution will allow binning in x and t

A wealth of very exiting results so far ...

... stay tuned for HERMES data with recoil detection

