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Motivation

Decomposition of nucleon spin

1

2
= Sq + Lq + Jg or

1

2
= Sq + Lq + Sg + Lg

Exp. (EMC, SLAC, HERMES): Sq ≪ 1
2

→֒ spin crisis (i.e. nonrel. quark model picture for spin structure of
nucleon too naive)

What degrees of freedom carry the nucleon spin?
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Outline

The anomalous magnetic moment

Sivers effect for single spin asymmetries

Generalized parton distributions (GPDs)
⊥ deformation of impact parameter distributions

→֒ intuitive connection with Ji’s sum rule for Jq

GPDs↔ ⊥ correlations↔ SSA

Summary
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Anomalous Magnetic Moment

〈p′ |jµ(0)| p〉 = ū(p′)

[

γµF1(∆
2) +

iσµν∆ν

2M
F2(∆

2)

]

u(p)

with ∆ = p′ − p.

Drell-Yan West frame (∆+ = 0)

1

2p+

〈

p′,↑
∣

∣q̄(0) γ+q(0)
∣

∣ p,↑
〉

= F1(−∆2
⊥)

1

2p+

〈

p′,↑
∣

∣q̄(0) γ+q(0)
∣

∣ p,↓
〉

= −∆x−i∆y

2M
F2(−∆2

⊥).
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Anomalous Magnetic Moment and ~L

vector currect conserves quark helicity:

F2 ∝

R L

R R

R L

L L

×
+

total angular momentum conservation requires that initial and final
state differ by one unit of orbital angular momentum

→֒ Anomalous magnetic moment requires orbital angular momentum
in nucleon wave function
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Anomalous Magnetic Moment and ~Lq

Anomalous magnetic moment requires quark OAM

Let qLz≥1(x) be the distribution of quarks with Lz ≥ 1

One can show (M.B. + G.Schnell, t.b.p.)

(

Eq(x, 0, 0)

4M

)2

≤ qLz≥1(x)b2
q(x)

where b2
q(x) is the b2

⊥-weighted distribution for quarks of flavor q

and
∫

dxEq(x, 0, 0) = κq = F q
2 (0)

→֒ As long as b2(x) <∞, a nonzero value of Eq(x, 0, 0) provides a
lower bound on the probability to find quarks with Lz ≥ 1

Note: nonrelativistically, no OAM needed to produce anomalous
magnetic moment!

physics: a relativistic particle that is confined must have OAM

No statement about net OAM
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What are Single Spin Asymmetries (SSA)?

Target (or projectile) transversely polarized

→֒ left-right asymmetry of particles in the final state

γ + p↑−→ π+ + X

or target and projectile unpolarized

→֒ transverse polarization (⊥ to scattering plane) is observed in final
state

p + p −→ Λ↑ +X

⊗

?
γ P

π+

⊗

⊙

P P
Λ h
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Other Examples for ⊥ SSA:

©

⊗

p

Λ, Ξ

©

⊙

p

Σ

©

⊙

Σ

Λ

©

⊗

Λ

Σ, Ξ

©

⊗

Σ±

Σ0, Ξ

©⊗

p

n

©⊙

p

π+, π0, η0, K+

π−

⊗

γ

π+, π0, η0, K+
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Theoretical Description (γ + p↑−→ π+ + X)

use factorization (high energies) to express
momentum distribution of outgoing π+ as
convolution of

momentum distribution of quarks in
nucleon

→֒ unintegrated parton density q(x,k⊥)

momentum distribution of π+ in jet
created by leading quark q

→֒ fragmentation function Dπ+

q (z,p⊥)

e
e′

π+

q(x,k⊥)

Dπ+

q (z,p⊥)

p

q

average ⊥ momentum of pions obtained as sum of
average k⊥ of quarks in nucleon (Sivers effect)
average p⊥ of pions in quark-jet (Collins effect)
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Theoretical Description (γ + p↑−→ π+ + X)

~pγ ~pN π+

?

What is the sign/magnitude of the left-right asymmetry?

Sivers effect: asymmetry of π+ due to asymmetry in ⊥
momentum distribution of quarks q(x,k⊥) in target.

Collins effect: asymmetry arises when transversely polarized
quark fragments into π+
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Theoretical Description (γ + p↑−→ π+ + X)

~pγ ~pN π+

?

What is the sign/magnitude of the left-right asymmetry?

Sivers effect: asymmetry of π+ due to asymmetry in ⊥
momentum distribution of quarks q(x,k⊥) in target.

Collins effect: asymmetry arises when transversely polarized
quark fragments into π+
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Sivers Effect and ~Lq

optical theorem⇒ inclusive X-section↔ forward Compton
amplitude

⊥ asymmetry arises from amplitudes where helicity of initial and
final state (in forward Compton amplitude) have opposite helicity

|x〉 =
1√
2

(|R〉+ |L〉) |−x〉 =
1√
2

(|R〉 − |L〉)

→֒

asymmetry ∝ dσ+x̂

dΩ
− dσ−x̂

dΩ
∝

〈

R
∣

∣

∣
T̂

∣

∣

∣
L

〉

,

where T̂ represents the operator that probes the forward Compton
amplitude.

→֒ Sivers requires nonzero interference between L and R (nucleon)
helicity amplitudes in SIDIS
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Sivers Effect and ~Lq

asymmetry ∝

R L

(with appropriate cuts on the momentum of the active quark ...)

Here the quark helicity can either flip too (suppressed by chiral
symmetry) or it can remain unchanged
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Sivers Effect and ~Lq

quark helicity flip:

asymmetry ∝

R L

R L

helicity flip of quark supressed by chiral symmetry mq ≈ 0
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Sivers Effect and ~L

no quark helicity flip:

asymmetry ∝

R L

R R

total angular momentum conservation requires that initial and final
state differ by one unit of orbital angular momentum

→֒ Sivers effect requires OAM in nucleon wave function
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Sivers and FSI

average ⊥ momentum due to FSI

〈k⊥〉 ∼
〈

P, S

∣

∣

∣

∣

q̄(0)γ+

∫ ∞

0

dη−G+⊥(η)q(0)

∣

∣

∣

∣

P, S

〉

(semi-classical) interpretation: net transverse momentum is result
of averaging over the transverse force from spectators on active
quark
∫ ∞

0
dη−G+⊥(η) is ⊥ impulse due to FSI

FSI in 1st order perturbation theory

〈kq〉 = − g

4p+

∫

d2y⊥

2π

y⊥

|y⊥|2
〈

p, s

∣

∣

∣

∣

q̄(0)γ+ λa

2
q(0)ρa(y⊥)

∣

∣

∣

∣

p, s

〉

→֒

Sivers effect←→ color density-density correlations in ⊥ plane
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Sivers and FSI

〈kq〉 = − g

4p+

∫

d2y⊥

2π

y⊥

|y⊥|2
〈

p, s

∣

∣

∣

∣

q̄(0)γ+ λa

2
q(0)ρa(y⊥)

∣

∣

∣

∣

p, s

〉

Sivers effect probes color density-density correlations in impact
parameter space

under rotations generated by Lq + Lg, operator on r.h.s.
transforms as a vector in plane

→֒ changes OAM by one unit

→֒ need OAM in wave function (quark and/or glue)
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Generalized Parton Distributions (GPDs)

GPDs provide decomposition of form factors at a given value of t,
w.r.t. the average momentum fraction x = 1

2 (xi + xf ) of the active
quark

∫

dxHq(x, ξ, t) = F q
1 (t)

∫

dxH̃q(x, ξ, t) = Gq
A(t)

∫

dxEq(x, ξ, t) = F q
2 (t)

∫

dxẼq(x, ξ, t) = Gq
P (t),

xi and xf are the momentum fractions of the quark before and
after the momentum transfer
2ξ = xf − xi

F q
1 (t), F q

2 (t), Gq
A(t), and Gq

P (t) are the Dirac, Pauli, axial, and
pseudoscalar formfactors, respectively.
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Generalized Parton Distributions (GPDs)

measurement of the quark momentum fraction x singles out one
space direction (the direction of the momentum)

→֒ makes a difference whether the momentum transfer is parallel, or
⊥ to this momentum

→֒ GPDs must depend on an additional variable which characterizes
the direction of the momentum transfer relative to the momentum
of the active quark −→ ξ.

in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs
must reduce to the ordinary PDFs:

Hq(x, 0, 0) = q(x) H̃q(x, 0, 0) = ∆q(x).

GPDs are form factor for only those quarks in the nucleon carrying
a certain fixed momentum fraction x

→֒ t dependence of GPDs for fixed x, provides information on the
position space distribution of quarks carrying a certain momentum
fraction x
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GPDs←→ q(x,b⊥)

→֒ nucleon-helicity nonflip GPDs can be related to distribution of
partons in ⊥ plane

q(x,b⊥) =

∫

d2∆⊥

(2π)2
ei∆⊥·b⊥H(x, 0,−∆2

⊥),

∆q(x,b⊥) =

∫

d2∆⊥

(2π)2
ei∆⊥·b⊥H̃(x, 0,−∆2

⊥),

Note that x already measures longitudinal momentum of quarks

→֒ no similtaneous measurement of long. position of quarks
(Heisenberg)
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GPDs←→ q(x,b⊥)

Impact parameter space interpretation (consider nucleon
polarized in x direction)
|X〉 ≡ |p+,R⊥ = 0⊥, ↑〉+ |p+,R⊥ = 0⊥, ↓〉
with |p+,R⊥ = 0⊥, λ〉 =

∫

d2k⊥ |p+,k⊥, λ〉 .
→֒ unpolarized quark distribution for this state:

qX(x,b⊥) = q(x,b⊥)− 1

2M

∂

∂by

∫

d2∆⊥

(2π)2
E(x, 0,−∆2

⊥)eib⊥·∆⊥

where q(x,b⊥) is the impact parameter space distribution in a
longitudinally polarized nucleon

Physics: j+ = j0 + j3, and left-right asymmetry from j3 !
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The physics of E(x, 0,−∆2
⊥)

qX(x,b⊥) in transversely polarized nucleon is transversely
distorted compared to longitudinally polarized nucleons !

mean displacement of flavor q (⊥ flavor dipole moment)

dq
y ≡

∫

dx

∫

d2b⊥qX(x,b⊥)by =
1

2M

∫

dxEq(x, 0, 0) =
κp

q

2M

with κp
u/d ≡ F

u/d
2 (0) = O(1− 2) ⇒ dq

y = O(0.2fm)
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simple model for Eq(x, 0,−∆2
⊥)

For simplicity, make ansatz where Eq ∝ Hq

Eu(x, 0,−∆2
⊥) =

κp
u

2
Hu(x, 0,−∆2

⊥)

Ed(x, 0,−∆2
⊥) = κp

dHd(x, 0,−∆2
⊥)

with

κp
u = 2κp + κn = 1.673 κp

d = 2κn + κp = −2.033.

Satisfies:
∫

dxEq(x, 0, 0) = κP
q

Model too simple but illustrates that anticipated distortion is very
significant since κu and κd known to be large!
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x = 0.5x = 0.5

x = 0.3x = 0.3

bx

by

bx

by

bx

by

bx

by

bx

by

bx

by

x = 0.1x = 0.1

u(x,b⊥) uX(x,b⊥)

x = 0.5x = 0.5

x = 0.3x = 0.3

bx

by

bx

by

bx

by

bx

by

bx

by

bx

by

x = 0.1x = 0.1

d(x,b⊥) dX(x,b⊥)

Probes of Orbital Angular Momentum – p.24/40



Intuitive connection with ~Lq

(some) DIS-kinematics (target rest frame & momentum transfer in
−ẑ direction):

pe⊥ = p′
e⊥ = 0⊥ pz

e → −∞ pz
e
′ → −∞

→֒ only “−” component of all momenta and momentum transfers
large, e.g.

p−e ≡
1√
2

(

p0
e − pz

e

)

→∞ p+
e ≡

1√
2

(

p0
e + pz

e

)

=
m2

e + p2
e⊥

2p−e
→ 0

→֒ only “−” component of the electron current jµ
e = ū(p′)γµu(p) large

vector-vector interaction

M∝ jµ
e jν

q gµν = j−e j+
q + j+

e j−q − j⊥e j⊥q

→֒ electron “sees” (for pz
e → −∞) only j+

q
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Intuitive connection with ~Lq

Electromagnetic interaction couples to vector current. Due to
kinematics of the DIS-reaction (and the choice of coordinates —
ẑ-axis in direction of the momentum transfer) the virtual photons
“see” (in the Bj-limit) only the j+ = j0 + jz component of the quark
current

If up-quarks have positive orbital angular momentum in the
x̂-direction, then jz is positive on the +ŷ side, and negative on the
−ŷ side

~pγ
ẑ

ŷ
jz > 0

jz < 0
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Intuitive connection with ~Lq

Electromagnetic interaction couples to vector current. Due to
kinematics of the DIS-reaction (and the choice of coordinates —
ẑ-axis in direction of the momentum transfer) the virtual photons
“see” (in the Bj-limit) only the j+ = j0 + jz component of the quark
current

If up-quarks have positive orbital angular momentum in the
x̂-direction, then jz is positive on the +ŷ side, and negative on the
−ŷ side

→֒ j+ is distorted not because there are more quarks on one side
than on the other but because the DIS-photons (coupling only to
j+) “see” the quarks on the +ŷ side better than on the −ŷ side (for
Lx > 0).
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Ji’s sum rule (intuitive approach)

Fourier transform of H(x, 0,−∆2
⊥) and E(x, 0,−∆2

⊥) describes
distribution of (unpolarized) quarks in ⊥ plane

q(x,b⊥) = H(x,b⊥) +
εijSi

2M

∂

∂bj
E(x,b⊥)

with H(x,b⊥) =
∫ d2∆2

⊥

(2π)2 eib⊥·∆⊥H(x, 0,−∆2
⊥), and

E(x,b⊥) =
∫ d2∆2

⊥

(2π)2 eib⊥·∆⊥E(x, 0,−∆2
⊥)

calculate
〈

Jx
q

〉

=

∫

T++
q by

for this state

E(x,b⊥) describes deformation of distribution of partons in ⊥
plane when target has ⊥ polarization Sj

∫

d2b⊥q(x,b⊥)bi =
εijSj

2M
Eq(x, 0, 0) Probes of Orbital Angular Momentum – p.28/40



Ji’s sum rule (intuitive approach)

〈

Jx
q

〉

=
∫

dx−d2b⊥T++
q by

distribution of T++ in ⊥ plane given by
∫

dx−T++
q (x−,b⊥) =

∫

dxq(x,b⊥)x

→֒ find for this state

〈

Jx
q

〉

=
1

2

∫

dx

∫

d2b⊥q(x,b⊥)by =
1

2

∫

dxE(x, 0, 0)x

which is part of Ji’s sum rule

Other part due to fact that light-cone helicity eigenstates not same
as spin eigenstates in rest frame (Wigner-Melosh rotation)

→֒ need to take expectation value in state that has small ⊥ momenta
and which corresponds to state that is ⊥ polarized in rest frame!

after some work one finds that there is some additional ⊥
displacement, which eventually yields

〈

Jx
q

〉

=
1

2

∫

dx

∫

d2b⊥q(x,b⊥)by =
1

2

∫

dx [H(x, 0, 0) + E(x, 0, 0)]xProbes of Orbital Angular Momentum – p.29/40



GPD↔ Quark Correlations↔ SSA

Know from study of generalized parton distributions (GPDs) that
distribution of partons in ⊥ plane q(x,b⊥) is significantly deformed
for a transversely polarized target

mean displacement of flavor q (⊥ flavor dipole moment)

dq
y ≡

∫

dx

∫

d2b⊥q(x,b⊥)by =
1

2M

∫

dxEq(x, 0, 0) =
κp

q

2M

with κp
u/d ≡ F

u/d
2 (0) = O(1− 2) ⇒ dq

y = O(0.2fm)
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GPD↔ Quark Correlations←→ SSA

〈

ki
q

〉

=
g

6p+

∫

d2y⊥

2π

yi

|y⊥|2
〈

p, s
∣

∣q̄(0)γ+q(0)ρ(y⊥)
∣

∣ p, s
〉

→֒ expect:
〈ky

u〉 < 0 and 〈ky
d〉 > 0

for proton polarized in +x̂ direction

Physics: FSI is attractive

→֒ translates position space distortion (before the quark is knocked
out) in +ŷ-direction into momentum asymmetry that favors −ŷ
direction
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GPD↔ Quark Correlations←→ SSA

example: γp→ πX (Breit frame)

~pγ ~pN d

u

π+

u, d distributions in ⊥ polarized proton have left-right asymmetry in
⊥ position space (T-even!); sign determined by κu & κd

attractive FSI deflects active quark towards the center of
momentum

→֒ FSI converts left-right position space asymmetry of leading quark
into right-left asymmetry in momentum

compare: convex lens that is illuminated asymmetrically

→֒ “chromodynamic lensing”

naturally leads to correlation between sign of κq/Lq and sign of
SSA
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Summary

anmalous magnetic moment of nucleon requires nonzero quark
OAM — but not much — and no statement about net OAM

left-right asymmetry of π+ produced in γ + p −→ π+ + X on
transversely polarized target can have two sources:

Sivers: unintegrated parton density q(x,k⊥) for target
polarized in x̂ direction is not symmetric under ky → −ky

Collins: distribution of π+ in jet from quark polarized in x̂
direction is not symmetric under ky → −ky

Sivers effect nonzero due to final state interactions (vanishes
under naive time reversal)

Sivers interesting because it probes
k⊥-dependence of the nucleon wave function
requires OAM

can explain observed signs for Sivers from distortions of PDF in
impact parameter space
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Summary

“unintegrated Ji sum rule”

1

2
[Hq(x, 0, 0) + Eq(x, 0, 0)]x

can be interpreted as decomposition of Jq
⊥ w.r.t. the momentum of

the quarks
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