

HERA DVCS Working Group Meeting Hamburg, 28.10.2009

Caroline Riedl for the HERMES Collaboration

Outline: DVCS at HERMES

HERMES and HERA

- Generalized Parton Distributions
- Azimuthal Asymmetry Amplitudes
- The Recoil detector upgrade

HERMES and HERA

HERMES and HERA

leading twist, quark chirality conserving, spin-1/2		
f(quark helicity) 🖙	×	~
nucleon spin flip 🖗	photon: J ^P =1 ⁻ (DVCS)	
×	н	Ĥ
~	E	Ĩ
	J ^P =1 ⁻ mesons	J ^P =0 ⁻ mesons

4

"Nucleon tomography"

PDFs: longitudinal momentum forward limit $\xi=0$, t=0: $H^q(x,0,0) = q(x)$

Form Factors: transverse position moments of GPDs: $\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$

Nucleonic Spin: total angular momentum Ji relation:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

"Nucleon tomography"

PDFs: longitudinal momentum forward limit $\xi=0$, t=0: $H^q(x, 0, 0) = q(x)$

Form Factors: transverse position moments of GPDs: $\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$

Nucleonic Spin: total angular momentum Ji relation:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

leading twist, quark chirality conserving, spin-1/2		
f(quark helicity) 🖙	×	~
nucleon spin flip 🖗	photon: J ^P =1 ⁻ (DVCS)	
×	н	Ĥ
~	E	Ĩ
	J ^P =1 ⁻ mesons	J ^P =0 ⁻ mesons

4

"Nucleon tomography"

PDFs: longitudinal momentum forward limit $\xi=0$, t=0: $H^q(x,0,0) = q(x)$

Form Factors: transverse position moments of GPDs: $\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$

Nucleonic Spin: total angular momentum Ji relation:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

leading twist, quark chirality conserving, spin-1/2		
f(quark helicity) 🖙	×	~
nucleon spin flip 🖗	photon: J ^P =1 ⁻ (DVCS)	
×	н	Ĥ
~	E	Ĩ
	J ^P =1 ⁻ mesons	J ^P =0 ⁻ mesons

4

"Nucleon tomography"

PDFs: longitudinal momentum forward limit $\xi=0$, t=0: $H^q(x,0,0) = q(x)$

Form Factors: transverse position moments of GPDs: $\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$

Nucleonic Spin: total angular momentum Ji relation:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

leading twist, quark chirality conserving, spin-1/2			
f(quark helicity) 🖙	×	~	
nucleon spin flip 🖗	photon: J ^P =1 ⁻ (DVCS)		
×	н	Ĥ	
V	E	Ĩ	
	J ^P =1 ⁻ mesons	J ^P =0 ⁻ mesons	

4

"Nucleon tomography"

PDFs: longitudinal momentum forward limit $\xi=0$, t=0: $H^q(x, 0, 0) = q(x)$

Form Factors: transverse position moments of GPDs: $\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$

Nucleonic Spin: total angular momentum Ji relation:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

Deeply Virtual Compton Scattering

Azimuthal Dependences in $\gamma^*N \rightarrow \gamma N$

- Unpolarized target - Lepton beam with charge C_B and polarization P_B $|\mathcal{T}_{\rm BH}|^2 = \frac{K_{\rm BH}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^{2} c_n^{\rm BH} \cos(n\phi)$ Fourier $|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^{2} c_n^{\text{DVCS}} \cos(n\phi) + \frac{P_B}{P_B} \sum_{n=1}^{1} s_n^{\text{DVCS}} \sin(n\phi) \right]$ expansion in azimuthal angle ϕ $\mathcal{I} = \frac{C_B K_T}{\mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left[\sum_{n=0}^{3} c_n^T \cos(n\phi) + \mathcal{P}_B \sum_{n=1}^{2} s_n^T \sin(n\phi) \right]$

Bethe-Heitler propagators $\mathcal{P}(\boldsymbol{\varphi})$

Wanted: Fourier coefficients s_n and c_n of BH, DVCS, and I terms

Measured Azimuthal Asymmetries in DVCS

Born cross-section:

 $\sigma(\phi; \mathbf{P}_{\mathbf{B}}, \mathbf{C}_{\mathbf{B}}) = \sigma_{\mathrm{UU}}(\phi) \cdot \left[1 + \mathbf{P}_{\mathbf{B}} \mathcal{A}_{\mathrm{LU}}^{\mathrm{DVCS}}(\phi) + \mathbf{C}_{\mathbf{B}} \mathbf{P}_{\mathbf{B}} \mathcal{A}_{\mathrm{LU}}^{\mathcal{I}}(\phi) + \mathbf{C}_{\mathbf{B}} \mathcal{A}_{\mathrm{C}}(\phi)\right]$

Beam helicity asymmetries

BSA: projects out imaginary part of T_{DVCS} Beam charge asymmetry BCA: projects out real part of T_{DVCS}

$$\mathcal{A}_{\rm C}(\phi) \equiv \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-}$$

 $\mathcal{A}_{\mathrm{LU}}$

Target

Beam

no separate access to s_1^{q} and s_1^{DVCS}

 $\mathcal{A}_{\rm LU}(\phi) \equiv \frac{d\sigma^{\rightarrow} - d\sigma^{\leftarrow}}{d\sigma^{\rightarrow} + d\sigma^{\leftarrow}}$

Old approach at HERMES

and CLAS: single charge BSA

Measured Azimuthal Asymmetries in DVCS

Born cross-section:

 $\sigma(\phi; \mathbf{P}_{\mathbf{B}}, \mathbf{C}_{\mathbf{B}}) = \sigma_{\mathrm{UU}}(\phi) \cdot \left[1 + \mathbf{P}_{\mathbf{B}} \mathcal{A}_{\mathrm{LU}}^{\mathrm{DVCS}}(\phi) + \mathbf{C}_{\mathbf{B}} \mathbf{P}_{\mathbf{B}} \mathcal{A}_{\mathrm{LU}}^{\mathcal{I}}(\phi) + \mathbf{C}_{\mathbf{B}} \mathcal{A}_{\mathrm{C}}(\phi)\right]$

BSA:

projects out imaginary

part of \mathbf{T}_{DVCS}

Beam helicity asymmetries

Old approach at HERMES and CLAS: single charge BSA

$$\mathcal{A}_{\rm LU}(\phi) \equiv \frac{d\sigma^{\rightarrow} - d\sigma^{\leftarrow}}{d\sigma^{\rightarrow} + d\sigma^{\leftarrow}}$$

no separate access to s_1^{1} and s_1^{DVCS}

New approach at HERMES: $s_1^{1/2}$ and s_1^{DVCS} can be disentangled

Beam charge asymmetry BCA: projects out real part of T_{DVCS}

$$\mathcal{A}_{\rm C}(\phi) \equiv \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-}$$

 $\mathcal{A}_{\mathrm{LU}}$

Target

Beam

Charge difference BSA:

$$\mathcal{A}_{\mathrm{LU}}^{\mathrm{I}}(\phi) \equiv \frac{(d\sigma^{+\rightarrow} - d\sigma^{+\leftarrow}) - (d\sigma^{-\rightarrow} - d\sigma^{-\leftarrow})}{(d\sigma^{+\rightarrow} + d\sigma^{+\leftarrow}) + (d\sigma^{-\rightarrow} + d\sigma^{-\leftarrow})}$$

Charge average BSA:

$$\mathcal{A}_{\rm LU}^{\rm DVCS}(\phi) \equiv \frac{(d\sigma^{+\to} - d\sigma^{+\leftarrow}) + (d\sigma^{-\to} - d\sigma^{-\leftarrow})}{(d\sigma^{+\to} + d\sigma^{+\leftarrow}) + (d\sigma^{-\to} + d\sigma^{-\leftarrow})}$$

From Azimuthal Asymmetries to GPDs

Express asymmetries in terms of Fourier coefficients c and s
=asymmetry amplitudes

Compton Form Factors (CFFs)

$$\mathcal{F}(\xi,t) = \sum_{q} \int_{-1}^{1} \mathrm{d}x \ C_{q}^{\mp}(\xi,x) F^{q}(x,\xi,t)$$

Define linear combination of CFFs:

$$\mathcal{C}_{\rm unp}^{\mathcal{I}} = F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{H} - \frac{t}{4M^2} F_2 \mathcal{E}$$

twist-2 GPD

 \bigcirc F₁(t), F₂(t): Dirac, Pauli nucleonic form factors

At leading twist level (twist-2):

BCA

$$c_1^{\mathcal{I}} \propto \frac{\sqrt{-t}}{Q} \Re \left[\mathcal{C}_{unp}^{\mathcal{I}} \right] \propto -\frac{Q}{\sqrt{-t}} c_0^{\mathcal{I}}$$

DVCS Beam Helicity Asymmetries

Phys.Rev. **D60** (1999) 094017 and Prog.Nucl.Phys. **47** (2001) 401

10 all data 1996-2005, arXiv:0909.3587, accepted by JHEP

DVCS Beam Charge Asymmetry

DVCS Beam Charge Asymmetry

DVCS on Nuclear Targets

How does the nuclear environment modify parton-parton correlations?

- How do nucleon properties change in the nuclear medium?
- OVCS in coherent region: new insights into 'generalized EMC effect'?

- \bigcirc Nuclear GPDs \neq GPDs of free nucleon
- Enhancement of effect when leaving forward limit?
- Strong increase of real part of τ_{DVCS} with atomic mass number A?

DVCS on Nuclear Targets

How does the nuclear environment modify parton-parton correlations?

- How do nucleon properties change in the nuclear medium?
- OVCS in coherent region: new insights into 'generalized EMC effect'?

- \bigcirc Nuclear GPDs \neq GPDs of free nucleon
- Enhancement of effect when leaving forward limit?
- Strong increase of real part of τ_{DVCS} with atomic mass number A?

DVCS on Nuclear Targets

How does the nuclear environment modify parton-parton correlations?

- How do nucleon properties change in the nuclear medium?
- OVCS in coherent region: new insights into 'generalized EMC effect'?

- \bigcirc Nuclear GPDs \neq GPDs of free nucleon
- Enhancement of effect when leaving forward limit?
- Strong increase of real part of τ_{DVCS} with atomic mass number A?

+ deuterium, spin-1, 300 pb⁻¹

DVCS Nuclear Mass Dependence

Select for each target two samples (t-cutoffs): ➤ coherent enriched (≈ 65% coherent fraction) ➤ incoherent enriched (≈ 60% incoherent fraction)

DVCS Nuclear Mass Dependence

DVCS Nuclear Mass Dependence

DVCS Transverse Target Spin Asymmetry Aut(\$,\$\$)

 \bigcirc \mathcal{A}_{UT} : the only DVCS asymmetry on the proton for which **GPD E is not suppressed** (JLab Hall-A: BSA on neutron)

HERMES: transversely polarized hydrogen, 170 pb⁻¹, 2 beam charges
Separation of DVCS and interference terms possible:

$$A_{\rm UT}^{\mathcal{I}}(\phi,\phi_s) \propto \left[\mathrm{d}\sigma^+(\phi,\phi_s) - \mathrm{d}\sigma^-(\phi,\phi_s)\right] - \left[\mathrm{d}\sigma^+(\phi,\phi_s+\pi) - \mathrm{d}\sigma^-(\phi,\phi_s+\pi)\right]$$

$$\begin{array}{ll} \mathcal{A}_{\mathrm{UT}}^{\mathcal{I}}(\phi,\phi_{s}) & \propto & \mathrm{Im}\left(F_{2}\mathcal{H}-F_{1}\mathcal{E}\right)\mathrm{sin}(\phi-\phi_{s})\cos\phi \\ & + & \mathrm{Im}\left(F_{2}\widetilde{\mathcal{H}}-(F_{1}+\xi F_{2})\widetilde{\mathcal{E}}\right)\mathrm{cos}(\phi-\phi_{s})\sin\phi \end{array}$$

DVCS Transverse Target Spin Asymmetry $A_{UT}(\phi, \phi_s)$ \bigcirc A_{UT} : the only DVCS asymmetry on the proton for which **GPD E is not suppressed** (JLab Hall-A: BSA on neutron)

HERMES: transversely polarized hydrogen, 170 pb⁻¹, 2 beam charges
 Separation of DVCS and interference terms possible:

$A_{UT}^{DVCS}(\phi,\phi_S)^{-}$

also sensitive to GPD E

$$A_{\rm UT}^{\mathcal{I}}(\phi,\phi_s) \propto \left[\mathrm{d}\sigma^+(\phi,\phi_s) - \mathrm{d}\sigma^-(\phi,\phi_s)\right] \stackrel{\bullet}{=} \left[\mathrm{d}\sigma^+(\phi,\phi_s+\pi) - \mathrm{d}\sigma^-(\phi,\phi_s+\pi)\right]$$

$$\begin{array}{ll} A_{\mathrm{UT}}^{\mathcal{I}}(\phi,\phi_{s}) & \propto & \mathrm{Im}\left(F_{2}\mathcal{H}-F_{1}\mathcal{E}\right)\mathrm{sin}(\phi-\phi_{s})\cos\phi \\ & + & \mathrm{Im}\left(F_{2}\widetilde{\mathcal{H}}-(F_{1}+\xi F_{2})\widetilde{\mathcal{E}}\right)\mathrm{cos}(\phi-\phi_{s})\sin\phi \end{array}$$

DVCS AUT Amplitudes

Model: VGG with variation of J_u , while $J_d=0$

Caroline Riedl (DESY), HERA DVCS Working Group Meeting, Hamburg 28.10.2009

16

DVCS AUT Amplitudes

DVCS azimuthal amplitudes HERMES (prelim.)

(A) Beam charge asymmetry:

Projects out $Im(\tau_{\rm DVCS})$

 $\Re e(\tau_{\rm DVCS})$

(C) Transverse target spin asymmetry: GPD E from proton target

(D) Longitudinal target spin asymmetry:

HERMES 2006-2007: Recoil Detector

. . .

SC Solenoid (1 Tesla)

Photon Detector

Scintillating Fiber Tracker

Silicon Strip
 Detector

Target Cell with unpolarized ¹H or ²H

¹H (²H): factor of 1.6 (0.5) more than 1996-2005

Beam

18

Azimuthal coverage: 76%

Caroline Riedl (DESY), HERA DVCS Working Group Meeting, Hamburg 28.10.2009

Purpose:

\star To tag exclusive events

 Identify recoiling target proton
 Identify particles from background processes

¹H (²H): factor of 1.6 (0.5) more than 1996-2005

18

Azimuthal coverage: 76%

DVCS and the Recoil

► Missing φ: Δφ = φ_{meas} - φ_{calc}
 ► Missing p: Δp = p_{meas} - p_{calc}

Missing Mass ($\approx M_P^2$): $M_X^2 = (p + p_{\gamma^*} - p_{\gamma})^2$

Separation of Resonant and Elastic States with the Recoil

DVCS / Bethe Heitler

- Elastic:
 - $ep \rightarrow ep\gamma$
- Resonant ('associated'):
 - $ep \rightarrow e\Delta^+ \gamma$ $\Delta^+ \rightarrow \{ \begin{array}{c} n\pi^+, 1/3 \\ p\pi^0, 2/3 \end{array} \}$
 - 12% of signal
- Presence of π⁰ ⇒ proton fails coplanarity cut
 - Select elastic:
 - * $|\Delta \phi| < 0.1 \text{ rad}$ * $|p_T^{\text{calc}}|/|p_T^{\text{meas}}| = 0.5 \div 1.5$
 - Select resonant:
 - * $|\Delta \phi| > 0.35$ rad

Summary and Outlook: DVCS at HERMES

HERMES 1996-2005

Target spin asymmetry on transversely polarized H published in 2008

 \bigcirc BSA and BCA on H, D and nuclear targets to be published in 2009

Target spin asymmetries on longitudinally polarized H and D early 2010

HERMES 2006-2007

Recoil detector allows separation of resonant and elastic contributions

Resonant asymmetry unknown so far

Allows refinement of pre-Recoil data

HERMES provides complete set of DVCS azimuthal asymmetries as input to global GPD fits

Limited only by statistics and acceptance