DVCS Measurements -Past and Future

е

- Setting the scene
- The past and the present
- Global analysis
- The future

Caroline K. Riedl

5th Workshop of the APS Topical Group on Hadronic Physics (GHP 2013) Denver, April 11, 2013

Nucleon Tomography

Correlation between **spin** and **transverse momentum**?

Correlation between longitudinal momentum and transverse position ?

Illustrations: Ph. Hägler (TUM)

criedl@illinois.edu - DVCS Measurements: Past and Future

- $P_{1}^{(0)}$
- \bullet x, ξ : longitudinal momentum fractions of probed quark
- t : 4-momentum² transfer to target
- DVCS: Deeply Virtual Compton Scattering
- = electroproduction of a real photon
 - 4 chiral-even quark GPDs at leading twist:

Spin-½	flips nucleon helicity	conserves nucleon helicity	
does not depend on quark helicity	Ε	forwa	q⁺+q⁻ ard limit
depends on quark helicity	Ĩ	Γ	0, t→0 d ⁺ -q ⁻

GHP Workshop, Denver, April 11, 2013

DVCS as laboratory for probing hadrons

Sea/gluon region

Valence region

3. DVCS on hadrons other than the nucleon Spin-1: tensor and coherent signatures? How does the nuclear environment modify the DVCS amplitude? See also talk by Lekha Adhikari Wednesday afternoon, "Distribution of Angular Momentum in the Transverse Plane"

- BH reference amplitude magnifies DVCS
- Measure magnitude A (real part) and phase φ (imaginary part) of DVCS amplitude $\tau_{DVCS}=Ae^{i\varphi}$

helicity-independent cross section,

and

Σσ = σ(→) + σ(←)

Parameterization of observables in terms of GPDs / CFFs

Facilities with results available

criedl@illinois.edu - DVCS Measurements: Past and Future

Hall A (E00-110): cross section in the valence quark region

No Q² dependence of Im(I) over 1.5, 1.9 and 2.3 GeV²
Indication of perturbative QCD scaling behavior.

criedl@illinois.edu - DVCS Measurements: Past and Future

Hall A: Phys. Rev. Lett. 97, 262002 (2006)

CLAS (e1-dvcs): cross section

criedl@illinois.edu - DVCS Measurements: Past and Future

GHP Workshop, Denver, April 11, 2013

GPD H

x-section

HERA (H1 and ZEUS): cross section in the sea/glue region Ansatz: $d\sigma/dt \approx exp(-b|t|)$ t-slope:

criedl@illinois.edu - DVCS Measurements: Past and Future

GPD H

x-section

CLAS (e1-dvcs): beam-helicity asymmetry

CLAS: $\langle Q^2 \rangle = 1.82 \text{ GeV}^2$, $\langle x_B \rangle = 0.28$, $\langle -t \rangle = 0.31 \text{ GeV}^2$

- Data taken with inner eletromagnetic calorimeter for the detection of the BH/DVCS photon
- VGG Model overshoots data.

GPD model calculation "VGG" (Vanderhaeghen, Guidal, Guichon): Phys. Rev. D60 (1999) 094017 and Prog. Nucl. Phys. 47 (2001) 401

CLAS: PRL 100 (2008) 162002

11

HERMES (with recoil proton): beam-helicity asymmetry

single-charge

HERMES (with recoil proton): beam-helicity asymmetry

single-charge

criedl@illinois.edu - DVCS Measurements: Past and Future

HERMES: beam-charge asymmetry

criedl@illinois.edu - DVCS Measurements: Past and Future

GPD H

Re(T_{DVCs})

BCA

H1: beam-charge asymmetry

0.6

- First and only measurement at collider
 - low $x_B = 10^{-4} \dots 10^{-2}$
 - $6.5 < Q^2 < 80 \text{ GeV}^2$
 - 30 < W < 140 GeV
 - ItI<1 GeV²
- Observation
 - $Re(\tau_{DVCS}) > 0$ for HERA (small x)
 - $Re(\tau_{DVCS}) < 0$ for HERMES (larger x)

(if same Φ-convention is used as for H1, i.e. non-Trento)

- $\rho = \text{Re}(\tau_{\text{DVCS}}) / \text{Im}(\tau_{\text{DVCS}})$
 - • $\rho = 0.20 \pm 0.05(\text{stat}) \pm 0.08(\text{sys})$
 - In good agreement with theoretical calculation (dispersion relation)

H1: Phys. Lett. B681 (2009) 391

CLAS (eg1-dvcs) and HERMES: longitudinal target-spin asymmetry

CLAS eg1-dvcs

- measurements from CLAS-eg1b
- results from HERMES

Longitudinally Polarized Proton with CLAS"

HERMES double-spin LL asymmetry

HERMES: JHEP 06 (2010) 019

HERMES: transverse target-spin asymmetry

GPD E

Hall A (E03-106): beam-helicity GPD E asymmetry on the neutron

Sensitivity to GPD E

criedl@illinois.edu - DVCS Measurements: Past and Future

Global analysis of DVCS data (a selection)

K. Kumericki and D. Müller (KM) GPD H Nucl. Phys. B841 (2010) 1-58

- Global fit to extract GPD H at ξ =x. NNLO
- HERMES A_C , CLAS A_{LU} and Hall A x-section.
- Small-x behavior from HERA collider data.

criedl@illinois.edu - DVCS Measurements: Past and Future

Global fit to $H(x,\xi=x,t)$ from DVCS data

- Neural-network generated, model-independent parameterizations of CFFs
- Facilitates error propagation from data GHPWorkshop, Denver, April 11, 2013

19

Check of GPD universality

P. Kroll, H. Moutarde and F. Sabatié (KMS) arXiv:1210.6975

- Use hard-exclusive meson (DVMP) data, FF and PDFs to constrain GPD parameters (LO, LT): GK model
- Compare to DVCS observables good for HERA and HERMES, fair for JLab

Recent review article:

M. Guidal, H. Moutarde, M. Vanderhaeghen: Generalized Parton Distributions in the valence region from Deeply Virtual Compton Scattering, arxiv.org:1303.6600

criedl@illinois.edu - DVCS Measurements: Past and Future

Unpolarized x-section $\Sigma \sigma$ = important normalization factor for asymmetries. Also:

🙁 VGG model

☺ GK (Goloskokov-Kroll) model

➢ Minimal (i.e. forward) dual
model (→ Polyakov and
Vanderhaeghen)

ⓒ KM model, though needs large H~.

Polarized x-section, and in general imaginary part of τ (DVCS) known better.

HERMES: beam-helicity asymmetry in ep \rightarrow e $\gamma(\pi N)$ in the Δ -resonance region

The charged particle of (πN) reconstructed by the recoil detector.

 This result is consistent with the slight increase of the beam-helicity asymmetry amplitude with recoil proton.

 Associated process acts as small dilution in the asymmetries for the unresolved sample.

Only existing model prediction for sinφ amplitude:
π⁰p: -0.15, π⁺n: -0.10
P.A.M. Guichon, L. Mossé, M. Vanderhaeghen: Pion production in deeply virtual Compton scattering, Phys. Rev. D68, 034018 (2003).

HERMES: preliminary analysis

criedl@illinois.edu - DVCS Measurements: Past and Future

GHP Workshop, Denver, April 11, 2013

HERMES: DVCS on hadrons other than the proton

HERMES: Phys. Rev. C 81 (2010) 035202

JLab12

The future of DVCS

More details: see talk by

Stepan Stepanyan on

Wednesday afternoon: "The

CLAS12 Physics Program"

➡ Hall A: DVCS on the proton (E12–06–114).

Scaling tests of x-section; separation of Re and Im parts of τ DVCS; E=6.6, 8.8, 11 GeV.

E07–007 for p, E08–025 for n ran successfully in 2010 with 12GeV-equipment. Rosenbluth analysis ongoing.

 \blacktriangleright CLAS12: ALU, AUL, AUT and ALT on the proton and ALU on the neutron. Transversely polarized HD-Ice target. Timelike Compton Scattering; DDVCS?

COMPASS

40.95 Current DVCS data at colliders: 10³ ZEUS- total xsec ZEUS- da/dt H1- do/dt ► Phase 1: 2015/16: GPD H, large recoil H1-Acu EIC VSE 140 GeV.C Current DVCS data at fixed targets: detector: separation of Re and Im parts of HERMES- ALT A HERMES- ACU τ (DVCS) by using two different combinations HERMES- ALU, AUL, ALL HERMES- Aur Hall A- CFFs X CLAS- ALU CLAS- AUL 10² =100 GeV of beam charge and helicity; t-slope. Q² (GeV²) Planned DVCS at fixed targ .: Q²=50 GeV² COMPASS- do/dt, Acsu, Acst ► Phase 2: 2018 (?): GPD E: JLAB12- do/dt, ALU, AUL, ALL transversely polarized target. 10 **Future Electron-Ion Collider** (2025+)LHeC? ➡ ELIC @ JLab or eRHIC @ BNL: $\sqrt{s} = 20-70 \text{ GeV}$ 10⁻² 10⁻⁴ 10⁻³ 10⁻¹ ► ENC @ GSI: $\sqrt{s} = 40 \text{ GeV}, ...$ "Deeply Virtual Compton Scattering at a Proposed High-Luminosity Electron-Ion See also talk by Oleg Eyser Wednesday afternoon: Collider", E.-C. Aschenauer, S. Fazio, K. Kumericki and D. Mueller, arXiv:1304.0077 "Future Opportunities at an Electron-Ion Collider" criedl@illinois.edu - DVCS Measurements: Past and Future GHP Workshop, Denver, April 11, 2013

COMPASS CAMERA

2008/09: DVCS test runs with small recoil detector (not shown)

2012: first DVCS run with recoil detector CAMERA

- Detection of recoil proton
- First DVCS run Sept 26 until Dec. 2012

criedl@illinois.edu - DVCS Measurements: Past and Future

COMPASS: DVCS "Phase 1"

• First test run with large recoil detector end of 2012.

- Dedicated 2 years of data taking 2015/2016 with 160 GeV longitudinally polarized muon beam (μ + \leftarrow and μ - \rightarrow).
- t-slope on ϕ -integrated helicity-independent cross section.
- Helicity-independent x-section: $\sigma(\mu + \leftarrow) + \sigma(\mu \rightarrow)$, Re(CFF-H).
- Helicity-dependent x-section: $\sigma(\mu + \leftarrow) \sigma(\mu \rightarrow)$, Im(CFF-H).

Transverse

imaging

GPD H

List does not claim to be exhaustive.

Azimuthal asymmetries and GPDs

criedl@illinois.edu - DVCS Measurements: Past and Future

criedl@illinois.edu - DVCS Measurements: Past and Future

HERMES: unresolved reference sample

Disentangling the effects of recoil-detector acceptance and purification

