DVCS and Exclusive Processes at Hermes

Caroline Riedl

Pan-Pacific Symposium on High Energy Physics 2007 Vancouver, Aug. 1, 2007

- Motivation
- GPDs and DVCS Azimuthal Asymmetries
- DVCS Measurements at Hermes
- The Hermes Recoil Detector
- Summarizing Overview

The Composition of the Nucleon's Spin

$$\underline{\frac{1}{2}} = \underbrace{\frac{1}{2}\Delta\Sigma + \underline{L}_{q}}_{J_{q}} + \underbrace{\Delta G + \underline{L}_{g}}_{J_{g}}$$

• $\Delta \Sigma = 1/3$ from DIS and SIDIS

Hermes: Phys. Rev. D75 (2007) 012007

 $\Delta \Sigma = 0.330 \pm 0.011 \; ({\rm theo}) \pm 0.025 \; ({\rm exp}) \pm 0.028 \; ({\rm evol})$

- ΔG : first indication from DIS and pp \rightarrow small
- $L_q \rightarrow ? \rightarrow Ji's sum-rule! \leftarrow$ Generalized Parton Distributions Ji's sum rule: Ji, PRL 78 (1997) 610

$$J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \, x \left[H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t) \right]$$

 $\bullet~L_{\rm g} \rightarrow$? might be accessible at higher energies than Hermes via GPDs

GPDs: the clever parameterization of the nucleon

nts

unpolarized	polarized	nucleon helicity
$H(x,\xi,t)$	$\widetilde{H}(x,\xi,t)$	conserved
$E(x,\xi,t)$	$\widetilde{E}(x,\xi,t)$	flipped

 <u>PDFs</u>: H^q(x,0,0) = q(x), H^q(x,0,0) = Δq(x) forward limit <u>Form Factors</u>: ∫ dx [GPD] = f(t), independent of ξ ⇒ GPDs: simultaneous description of transverse position (FF) and momentum distribution (PDF): "Nucleon Tomography"

• Sum rule for J of quarks/gluons! Need H and E for $t \rightarrow 0$ <u>Recent theoretical reviews:</u>

PPNP 47 (2001) 401; Phys. Rept. 388 (2003) 41; Phys. Rept. 418 (2005) 1

C. Riedl (DESY)

DVCS: the prime process to access GPDs

- $d\sigma \propto |\mathcal{T}|^2 = |\mathcal{T}_{DVCS}|^2 + |\mathcal{T}_{BH}|^2 + \mathcal{I}$
- Interference: $\mathcal{I} = \mathcal{T}_{\rm DVCS} \mathcal{T}_{\rm BH}^* + \mathcal{T}_{\rm DVCS}^* \mathcal{T}_{\rm BH}$
- \bullet Hermes kinematics: $|\,\mathcal{T}_{\rm DVCS}\,|^2 < |\,\mathcal{T}_{\rm BH}\,|^2$
- $\mathcal{I} \propto \pm (c_0 + \sum_n [c_n \cos(n\phi) + s_n \sin(n\phi)])$
 - $c_n = \text{Lin. Comb. (UU), (UT), (LL), (LT)}$

▶
$$s_n = \text{Lin. Comb. (LU), (UL), (UT), (LT)}$$

(beam state, target state) Un-, Long.-, Trans.-pol

- Project out sin- and cos-moments by different:
 - beam charges
 - beam helicities
 - target polarizations (long. and trans.)

 $\Rightarrow {\sf Azimuthal asymmetries} \\ \Rightarrow {\sf Linear combinations of GPDs}$

The Hermes forward spectrometer

The powerful DVCS data pool of Hermes

- 2 beam charges (1,2,3), 2 beam helicities (1,2,3)
- longitudinally (1) and transversely (2) polarized target
- unpolarized nuclear targets (1,2)
- Recoil Detector (3)

Finding exclusive events

• Classic technique at Hermes: access to exclusivity via missing mass

$$M_{\mathrm{x}}^2 = (P_{\mathrm{e}} + P_{\mathrm{P}} - (P_{\mathrm{e}'} + P_{\gamma}))^2$$

• 2006/07: recoiling proton detected \Rightarrow all reaction partners measured!

The gallery of DVCS azimuthal asymmetries

1. Beam Charge Asymmetry $A_{\mathrm{C}}(\phi)$

$$\mathrm{d}\sigma(e^+,\phi) - \mathrm{d}\sigma(e^-,\phi) \propto \mathrm{Re}(F_1\mathcal{H})\mathrm{cos}\,\phi$$

2. Beam Spin Asymmetry $A_{
m LU}(\phi)$

$$\mathrm{d}\sigma(\overrightarrow{e},\phi) - \mathrm{d}\sigma(\overleftarrow{e},\phi) \propto \mathrm{Im}(F_1\mathcal{H})\mathrm{sin}\,\phi$$

3. Longitudinal Target Spin Asymmetry $A_{\rm UL}(\phi)$

 $d\sigma(\overrightarrow{P},\phi) - d\sigma(\overrightarrow{P},\phi) \propto Im(F_1\widetilde{\mathcal{H}})sin\phi$ **4.** Transverse Target Spin Asymmetry $A_{\rm UT}(\phi,\phi_s)$

DVCS–BH interference term \mathcal{I} induces azimuthal asymmetries \Rightarrow GPDs

$$d\sigma(\phi,\phi_s) - d\sigma(\phi,\phi_s + \pi) \propto \operatorname{Im}(F_2\mathcal{H} - F_1\mathcal{E})\operatorname{sin}(\phi - \phi_s)\cos\phi \\ + \operatorname{Im}(F_2\widetilde{\mathcal{H}} - F_1\xi\widetilde{\mathcal{E}})\operatorname{cos}(\phi - \phi_s)\sin\phi$$

 F_1 , F_2 : PAULI, DIRAC Form Factors; \mathcal{H} , $\widetilde{\mathcal{H}}$, \mathcal{E} , $\widetilde{\mathcal{E}}$: COMPTON Form Factors (convolutions of hard scattering amplitude and corresponding twist-2 GPD) =

C. Riedl (DESY)

1. Beam Charge Asymmetry (BCA) versus ϕ

$$A_{\rm C}(\phi) = \frac{\mathrm{d}\sigma(e^+,\phi) - \mathrm{d}\sigma(e^-,\phi)}{\mathrm{d}\sigma(e^+,\phi) + \mathrm{d}\sigma(e^-,\phi)} \propto \mathsf{Re}(F_1\mathcal{H}) \cos\phi$$

$$P_1 = -0.011 \pm 0.019$$

$$P_2 = 0.060 \pm 0.027$$

$$P_3 = 0.016 \pm 0.026$$

$$P_4 = 0.034 \pm 0.027$$

BCA $\cos \phi$ amplitude

- Model (proton data only): PRD60 (1999) 094017 and PPNP47 (2001) 401 ⇒ Regge-inspired with D-term disfavored
- Contributions for ed \rightarrow eX γ : coherent (X=d): 20% incoherent (X=pn): 60% associated (X= Δ): 15%

Hermes publication: Phys. Rev. D75 (2007) 011103(R)

Factor of ≈ 20 more e^- and factor of ≈ 7 more e^+ data on tape!

2. Beam Spin Asymmetry (BSA)

$$A_{\rm LU}(\phi) = \frac{1}{\langle |P_B| \rangle} \cdot \frac{\mathrm{d}\sigma(\overrightarrow{e},\phi) - \mathrm{d}\sigma(\overleftarrow{e},\phi)}{\mathrm{d}\sigma(\overrightarrow{e},\phi) + \mathrm{d}\sigma(\overleftarrow{e},\phi)} \propto \mathsf{Im}(F_1\mathcal{H})\mathsf{sin}\,\phi$$

C. Riedl (DESY)

3. Longitudinal Target Spin Asymmetry (LTSA)

$$A_{\mathrm{UL}}(\phi) = \frac{1}{\langle |P_{\mathrm{T}}| \rangle} \cdot \frac{\mathrm{d}\sigma(\overleftarrow{P}, \phi) - \mathrm{d}\sigma(\overrightarrow{P}, \phi)}{\mathrm{d}\sigma(\overleftarrow{P}, \phi) + \mathrm{d}\sigma(\overrightarrow{P}, \phi)} \propto \mathrm{Im}(F_{1}\widetilde{\mathcal{H}}) \sin \phi$$

4. Transverse Target Spin Asymmetry (TTSA) $A_{\rm UT}(\phi,\phi_s) = \frac{1}{\langle |P_{\rm T}| \rangle} \cdot \frac{\mathrm{d}\sigma(\phi,\phi_s) - \mathrm{d}\sigma(\phi,\phi_s+\pi)}{\mathrm{d}\sigma(\phi,\phi_s) + \mathrm{d}\sigma(\phi,\phi_s+\pi)} \propto$ A^{sin(∲-∲}s)cos(∲) UT $e^+ p^{\uparrow\uparrow} \rightarrow e^+ \gamma X$ (M < 1.7 GeV) 0.2 sensitive to $J_{\rm u}$: RMES acceptance) -0.2 $\operatorname{Im}(F_2\mathcal{H} - F_1\mathcal{E})$. -0.4 -0.6 $\sin(\phi - \phi_s)\cos\phi +$ A cos(∲-∲sin(∳) 0.2 NOT sensitive to J_{11} : 0 -0.2 $\operatorname{Im}(F_2\widetilde{\mathcal{H}}-F_1\xi\widetilde{\mathcal{E}})$. -0.6 $\cos(\phi - \phi_s) \sin \phi$ n 0.25 0.5 0.1 0.2 0.3 2.5 Q² (GeV²) XB -t (GeV²) Sensitivity on $J_{\rm u}$: hep-ph/0506264, assuming $J_{\rm d} = 0$ Factor of 1 more data

C. Riedl (DESY)

DVCS and Exclusive Processes at Hermes

PACSPIN07 14 / 23

First (Model-Dependent) Contraint on $J_{\rm u} + k \cdot J_{\rm d}$

2b. DVCS on nuclear targets

- How does the nuclear environment modify parton-parton correlations?
- Hermes nuclear targets: ²H, ⁴He, ¹⁴N, ²⁰Ne, ^{82–86}Kr, ^{129–134}Xe

2b. DVCS on nuclear targets

- How does the nuclear environment modify parton-parton correlations?
- Hermes nuclear targets: ²H, ⁴He, ¹⁴N, ²⁰Ne, ^{82–86}Kr, ^{129–134}Xe
- Nuclear BSA: clear sin ϕ amplitude in the exclusive region

Integrated kinematics: Neon: $-0.22 \pm 0.03 \pm 0.03$ proton: $-0.18 \pm 0.03 \pm 0.03$

2b. DVCS on nuclear targets

- How does the nuclear environment modify parton-parton correlations?
- Hermes nuclear targets: ²H, ⁴He, ¹⁴N, ²⁰Ne, ^{82–86}Kr, ^{129–134}Xe

Factor of $\approx 2/1$ more data on tape for Xenon/Krypton

Recoil Detector installation: December 2005

C. Riedl (DESY)

DVCS and Exclusive Processes at Hermes

PACSPIN07 17 / 23

The Hermes Recoil Detector

- Superconducting Solenoid (1 Tesla)
- Photon Detector
 - ▶ 3 layers of Tungsten/Scintillator
 - π^0 background supression

• Scintillating Fiber Tracker

- 2 Barrels
- Each 2 parallel- & 2 stereo-layers
- Stereo angle: 10°
- Momentum reconstruction & PID

Silicon Strip Detector

- 2 Layers
- 16 double-sided sensors
- (10cm×10cm) active area
- Inside accelerator vacuum
- Momentum reconstruction & PID

• Target Cell with unpol. H_2 or D_2

The Recoil Road to genuine exclusivity at Hermes

 $\label{eq:pp} \begin{array}{l} \underline{\text{Silicon \& Fiber Tracker:}} \\ p_{\mathrm{p}} \in [135, 1200] \text{MeV/c} \\ p/\pi \ \textbf{PID} \ \text{for} \ p < 700 \text{MeV/c} \\ \underline{\text{Photon Detector:}} \\ p/\pi \ \textbf{PID} \ \text{for} \ p > 650 \text{MeV/c} \end{array}$

- Recoiling protons
 - Enhance signal fraction
 - Improve t-resolution
- Background pions and protons
- Photons from $\pi^0 \to \gamma \gamma$
- \Rightarrow Reduce **background contributions**:

associated production $: 11\% \searrow 1\%$

Recoil: First physics signatures

Recoil: First physics signatures

Momentum (p) reconstruction:

- Low momentum protons:
 - $\Rightarrow p$ by Σ (energy deposits)
- Higher momentum protons: $\Rightarrow p$ by Bethe-Bloch (dE/dx)
- High momentum particles:
 - \Rightarrow *p* by bending in B-field,
 - \Rightarrow tracks formed by spacepoints in (up to) 2 subdetectors

Recoil: First physics signatures

C. Riedl (DESY)

DVCS and Exclusive Processes at Hermes

PACSPIN07 20 / 23

Recoil: Proof of Principle

Response of Recoil Silicon Detector for "traditional DVCS candidates" (events with 1 lepton and 1 photon in front spectrometer):

C. Riedl (DESY)

DVCS and Exclusive Processes at Hermes

The Recoil Adventure goes on!

- Hera stopped its operation 4 weeks ago, Hermes took last data
- Collected statistics (*preliminary*) with operational recoil detector:
 - Electron beam 2006 (only Fiber Tracker operational):
 H₂: 5k DVCS (3 Mio DIS), D₂: 1k DVCS (0.8 Mio DIS)
 - Positron beam 2006/07 (all subdetectors fully operational):
 H₂: 42k DVCS (28 Mio DIS), D₂: 10k DVCS (7 Mio DIS)
- Analysis of BCA and BSA with recoil data
- Detector understanding in progress
 - Calibration
 - Alignment
 - Noise
 - Tracking
 - ▶ ...

 \Rightarrow Watch out for first results!

Summary: Hermes and Exclusive Processes unpolarized polarized TIN Q^2 large, t small \widetilde{H} : LTSA H: BCA, BSA, TTSA (TTSA) $x + \xi$ \widetilde{E} : (TTSA) E: TTSA H,E,H,E x-section see talk N $J^{\mathcal{P}} = 1^{-}$ mesons $J^{\mathcal{P}} = 0^{-}$ mesons J. Dreschler photon: $J^{\mathcal{P}} = 1^{-}$ (DVCS)

- GPD models agree in general with measurements
- First model-dependent extraction of $J_{\mathrm{u}} + k \cdot J_{\mathrm{d}}$ possible
- Most published DVCS results await a significant statistics upgrade: BCA (factor 20 / 7 more), BSA (factor 9), TTSA (factor 1)
- Recoil-data is being prepared for physics analysis
 ⇒ exploit direct exclusivity: no mass is missing anymore!
- Once background contribution is measured: refined analysis of pre-recoil DVCS and DVMP data

C. Riedl (DESY)

DVCS and Exclusive Processes at Hermes

PACSPIN07 23 / 23