DIS 2005: Spin physics working group Transversity measurements at HERMES

Markus Diefenthaler (markus.diefenthaler@desy.de)

Physikalisches Institut II, FAU Erlangen-Nürnberg

Foundations

on behalf of the

- Transversity distribution
- Azimuthal single-spin asymmetries
- Collins moments and Sivers moments

Collaboration

Extraction

- Extraction of moments
- 2002–2004 results
- Subleading-twist effects

Quark-nucleon scattering:

hadronic tensor $W^{\mu\nu}$ (can be interpreted in quark distribution functions) Forward virtual Compton scattering: related to $W^{\mu\nu}$ by optical theorem:

 $2\pi W^{\mu\nu} = \operatorname{Im} T^{\mu\nu}$

quark-nucleon forward amplitude $\ensuremath{\mathcal{A}}$

with helicities of quarks ($\lambda^{(\prime)}$) and hadrons ($\Lambda^{(\prime)}$)

Leading twist quark distribution functions can be expressed in terms of quark-nucleon forward amplitudes. Due to helicity conservation ($\Lambda + \lambda = \Lambda' + \lambda'$), parity and time-reversal invariance there are exactly three independent amplitudes:

$$\mathcal{A}_{++,++}, \quad \mathcal{A}_{+-,+-} \quad \text{and} \quad \mathcal{A}_{+-,-+}.$$

Leading twist quark distributions:

momentum distribution	helicity distribution	transversity distribution	
$oldsymbol{q}\left(oldsymbol{x},oldsymbol{Q^2} ight)$	$oldsymbol{\Delta}oldsymbol{q}\left(oldsymbol{x},oldsymbol{Q}^{2} ight)$	$oldsymbol{\delta q}\left(oldsymbol{x},oldsymbol{Q^2} ight)$	
forward quark-nucleon amplitudes: (in helicity basis)			
$\sim \operatorname{Im}(A_{++,++} + A_{+-,+-})$	$\sim \operatorname{Im}(A_{++,++} - A_{+-,+-})$	$\sim \operatorname{Im}\left(A_{+-,-+}\right)$	
measures spin average	measures helicity difference	measures helicity flip	
probabilistic interpretation:			
(in helicity basis)	(in helicity basis)	(in basis of transverse spin eigen states)	

 \rightarrow complete description of quark momentum (P) and spin (S) at leading twist:

$$\Phi(x) = \frac{1}{2} \left\{ \boldsymbol{q} \left(\boldsymbol{x}, \boldsymbol{Q}^{2} \right) \boldsymbol{P} + \lambda_{N} \Delta \boldsymbol{q} \left(\boldsymbol{x}, \boldsymbol{Q}^{2} \right) \gamma_{5} \boldsymbol{P} + \boldsymbol{\delta} \boldsymbol{q} \left(\boldsymbol{x}, \boldsymbol{Q}^{2} \right) \boldsymbol{P} \gamma_{5} \boldsymbol{\beta}_{\perp} \right\}.$$

Properties of transversity:

- The Difference between distributions $\Delta q(x, Q^2)$ and $\delta q(x, Q^2)$ provides measurement of the relativistic nature of the quarks inside the nucleon.
- Chirality and measurement: The transversity distribution is chiral-odd,

i.e. cannot be determined in inclusive DIS,

another chiral-odd fragmentation (or distribution) function is needed.

- The transversity distribution can be measured in experiments with two hadrons in the initial state or one hadron both in initial and final state. Thereby at least one hadron has to be transversely polarised.
- At HERMES

$$\delta q\left(x,Q^2\right) \times H_1^{\perp}\left(z,(-z\boldsymbol{k}_T)^2\right)$$

is accessible in azimuthal single-spin asymmetries in semi-inclusive DIS.

Azimuthal single-spin asymmetries:

Semi-inclusive DIS on a transversely polarised target:

In addition to the azimuthal angle Φ the azimuthal angle Φ_S is observable.

Non-vanishing $P_{h\perp}$ is caused by intrinsic transverse momenta p_T and k_T .

Generalised distribution and fragmentation functions:

Collins function $H_1^{\perp}\left(z,(-zm{k}_T)^2 ight)$	Sivers function $f_{1T}^{\perp}\left(x, oldsymbol{p}_{T}^{2} ight)$	
fragmentation function	distribution function	
() – ()		
chiral-odd	chiral-even	
	implies non-vanishing L^q_z	
naive time reversal odd \Rightarrow	naive time reversal odd \Rightarrow	
azimuthal single-spin asymmetries	azimuthal single-spin asymmetries	

Collins and Sivers moments:

- The transverse target cross section contains a convolution integral over intrinsic transverse momenta p_T and k_T .
- Assuming a Gaussian dependence one can disentangle the convolution integral.
- The *unweighted* (i.e. no weighting by $\frac{|P_{h\perp}|}{z}$) asymmetry A_{UT}^h (for each hadron type h) becomes:

UT means unpolarised beam (U) and transversely polarised target (T).

 S_T states target polarisation vector.

Extraction:

The HERMES experiment:

- **Deep inelastic scattering** of longitudinally polarised **positrons** (beam energy of 27.6 GeV) on
- a transversely polarised hydrogen gas target.

tracks with an efficiency exceeding 98%.

Forward magnetic spectrometer with precise momentum resolution

Extraction of Collins and Sivers moments:

• Determination of unweighted asymmetries for charged pions:

$$A_{\mathsf{UT}}^{\pi^{\pm}}(\Phi,\Phi_S) = \frac{1}{\langle P_z \rangle} \cdot \frac{N_{\pi^{\pm}}^{\uparrow}(\Phi,\Phi_S) - N_{\pi^{\pm}}^{\Downarrow}(\Phi,\Phi_S)}{N_{\pi^{\pm}}^{\uparrow}(\Phi,\Phi_S) + N_{\pi^{\pm}}^{\Downarrow}(\Phi,\Phi_S)}$$

 $\langle P_z \rangle = 0.754 \pm 0.050$ (average target polarisation value)

• **Moments** are extracted in the two-dimensional fit:

Sivers moment $A_{\mathsf{UT}}^{\pi^{\pm}}(\Phi, \Phi_{S}) = 2 \cdot \langle \sin(\Phi - \Phi_{S}) \rangle_{\mathsf{UT}}^{\pi^{\pm}} \cdot \sin(\Phi - \Phi_{S}) + \frac{\mathsf{Collins\ moment}}{2 \cdot \langle \sin(\Phi + \Phi_{S}) \rangle_{\mathsf{UT}}^{\pi^{\pm}}} \cdot \frac{B(\langle y \rangle)}{A(\langle x \rangle, \langle y \rangle)} \sin(\Phi + \Phi_{S}) + c_{3} \cdot \sin(2\Phi - \Phi_{S}) + c_{4} \cdot \sin\Phi_{S} + c_{5}$

 $A(\langle x \rangle, \langle y \rangle), B(\langle y \rangle)$: kinematic factors; c_3 , c_4 , c_5 : fit parameters

Unweighted Collins moment:

Results of 2002–2004 data:

- Result is consistent with published Collins moments.
- Collins moment is positive for π^+ and negative for π^- .
- The large negative π^- moment is unexpected.
- Additional information on the Collins fragmentation function (from BELLE) is needed in order to extract the transversity distribution.

Systematic uncertainties:

- Common scale uncertainty of 6.6% in the moments.
- Background asymmetry of diffractive vector mesons.

Unweighted Sivers moment:

Results of 2002–2004 data:

- Result is consistent with published Sivers moments.
- Sivers moment is significantly positive for π^+ and implies a non-vanishing orbital angular momentum L_z^q .
- Sivers moment for π^- is consistent with zero.
- Since spin independent fragmentation function is known, extraction of Sivers function is possible.

Systematic uncertainties:

- Common scale uncertainty of 6.6% in the moments.
- Background asymmetry of diffractive vector mesons.

Subleading-twist effects:

Transverse polarised target:

- in theory: polarisation w.r.t. the virtual photon $\rightarrow A_{UT,q}^{\sin(\Phi \pm \Phi_S)}$
- in experiment: polarisation w.r.t. the lepton beam $\rightarrow A_{\text{UT},l}^{\sin(\Phi \pm \Phi_S)}$
- **Conversion** with subleading-twist term:

 $A_{\mathsf{UT},\boldsymbol{q}}^{\sin\left(\Phi\pm\Phi_{S}\right)}\approx A_{\mathsf{UT},\boldsymbol{l}}^{\sin\left(\Phi\pm\Phi_{S}\right)} - \frac{1}{2}\sin\theta_{\gamma^{*}}A_{\mathsf{UL},\boldsymbol{l}}^{\sin\Phi}$

 θ_{γ^*} polar angle between the incoming beam direction and the virtual photon direction

• Longitudinal lepton moments $\langle \sin \Phi \rangle_{\text{UL}}^{l}$ (subleading-twist term) were extracted. longitudinally polarised target (L):

Semi-inclusive DIS on a

Results of $A_{\mathsf{UL},\boldsymbol{q}}^{\sin\Phi}$:

 $A_{\mathsf{UL},\boldsymbol{q}}^{\sin\Phi}$ is labelled $\langle \sin\Phi \rangle_{\mathsf{UL}}$. $A_{\mathsf{UL},\boldsymbol{l}}^{\sin\Phi}$ is labelled $\langle \sin\Phi \rangle_{\mathsf{UL}}'$.

Results:

- $A_{\mathsf{UL},\boldsymbol{q}}^{\sin\Phi}$ is about 2-5% for π^+
- and approximately zero for π^- .
- Systematic uncertainty is less than 0.003.
- Maximum difference $|A_{\text{UT},q} A_{\text{UT},l}| < 0.004$

Summary and outlook:

- Evidence for both Collins and Sivers asymmetries
- Non-zero Sivers function for π^+ implies non-vanishing orbital momentum of quarks inside the nucleon.
- Extraction of virtual photon asymmetries is in progress.
- Extraction of Sivers function is in progress.
- Amount of data will increase due continued data recording in running period 2004–2005.

