Die Messung transversaler Spinphänomene am HERMES-Experiment

Physikalisches Institut II, FAU Erlangen-Nürnberg

Die Spinstruktur des Nukleons:

Zusammensetzung des Nukleonenspin s_z^N :

$$\frac{s_z^N}{\hbar} = \frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_z^q + \Delta G + L_z^g$$

Transversale Spinphänomene

→ L_z^q → Messung der Transversity-Verteilung

Transversity-Verteilung $\delta q\left(x ight)$:

Beschreibung von Impuls und Spin der Quarks im Nukleon

- experimentell unbestimmt Wahrscheinlichkeitsinterpretation:
- Helizitätsumkehr:

$$N^{\Uparrow}q^{\downarrow}
ightarrow N^{\Downarrow}q^{\uparrow}$$

Messung der Transversity-Verteilung:

- Chiralitätseigenschaften:
 - chiral-ungerade Transversity-Verteilung
 - meßbar in Verbindung mit chiral-ungeraden Partner
- **Messungen bei HERMES:** semi-inklusive tiefinelastische Streuung an einem transversal polarisierten Wasserstoff-Target

 $\circ ep^{\Uparrow}
ightarrow e'hX
ightarrow {\sf Collins-Mechanismus}$

 $\circ ep^{\uparrow} \rightarrow e'h_1h_2X \Rightarrow$ Vortrag von Dr. Stinzing (HK 16.5)

Collins Mechanismus

 $^{\circ}$ chiral-ungerade Collins-Fragmentationsfunktion $H_1^{\perp q}$

Korrelation zwischen der transversalen Polarisation des fragmentierenden Quarks

und des transversalen Impuls $\boldsymbol{P}_{h\perp}$ des entstandenen Hadrons

Der Sivers-Mechanismus:

- nicht-verschwindende **Siversverteilung** f_{1T}^{\perp} involviert eine nicht-verschwindende Streuamplitude der Form $N^{\uparrow}q^{\uparrow} \rightarrow N^{\Downarrow}q^{\uparrow}$
- Bahndrehimpuls der Quarks:

• Wechselwirkung im Endzustand:

Links-Rechts-Asymmetrie einer Verteilungsfunktion

Links-Rechts-Asymmetrie einer Impulsverteilung

Transversale Einzel-Spin-Asymmetrien:

- transversale Einzel-Spin-Asymmetrie (SSA):
 - transversale Asymmetrie in der Impulsverteilung der erzeugten Hadronen in transversaler Richtung zum Nukleonspin
 - $^\circ\,$ nicht verschwindender transversaler Hadronimpuls $P_{
 m h\perp}$ bedingt durch intrinsische transversale Impulse p_{\perp} und k_{\perp}

⇒ Collins- und Siversmechanismus

- Wechselwirkung im Endzustand ↔ naive time reversal odd
- Kinematik an einem transversal polarisierten Target:

Die Collins- and Siversamplituden:

Transversale Einzel-Spin-Asymmetrie A_{UT}^h für den Hadronentyp h,

- unpolarisierten Leptonenstrahl (U) und
- transversal polarisiertes Target (T):

Die Messung der Collins- und Siversamplituden:

Das transversal polarisierte Target:

- Polarisiertes Gas-Target im Inneren des Speicherrings,
- Mehrfachstreuung und Verdünnung der Polarisation durch unpolarisiertes Trägermaterial unterbunden
- Speicherzelle
- hoher Polarisationsgrad

Das Vorwärtsspektrometer:

- große Impuls- und Winkelakzeptanz: $\theta_{hor.} \leq 175 \, \text{mrad}$, $40 \, \text{mrad} \leq \theta_{\text{vert.}} \leq 140 \, \text{mrad}$
- präzise Impulsbestimmung: $\Delta p/p = 0.7 1.3\%$
- und Winkelauflösung: $\Delta \theta \leqslant 0.6 \, \mathrm{mrad}$
- zuverlässige Unterscheidung von Leptonen und Hadronen

Die Extraktion der Collins- und Siversamplituden:

• Maximum-Likelihood Methode:

$$F\left(2\left\langle\sin\left(\phi\pm\phi_{S}\right)\right\rangle_{\mathsf{UT}}^{h},\ldots,\phi,\phi_{S}\right)=\frac{1}{2}\left(1+S_{\perp}\left(2\left\langle\sin\left(\phi+\phi_{S}\right)\right\rangle_{\mathsf{UT}}^{h}\cdot\sin\left(\phi+\phi_{S}\right)+2\left\langle\sin\left(\phi-\phi_{S}\right)\right\rangle_{\mathsf{UT}}^{h}\cdot\sin\left(\phi-\phi_{S}\right)+2\left\langle\sin\left(3\phi-\phi_{S}\right)\right\rangle_{\mathsf{UT}}^{h}\cdot\sin\left(3\phi-\phi_{S}\right)+2\left\langle\sin\left(2\phi-\phi_{S}\right)\right\rangle_{\mathsf{UT}}^{h}\cdot\sin\left(2\phi-\phi_{S}\right)+2\left\langle\sin\left(2\phi-\phi_{S}\right)\right\rangle_{\mathsf{UT}}^{h}\cdot\sin\left(2\phi-\phi_{S}\right)+2\left\langle\sin\phi_{S}\right\rangle_{\mathsf{UT}}^{h}\cdot\sin\phi_{S}\right)\right)$$

• Maximierung des Logarithmus der gewichteten Dichtefunktion $\mathcal{L} = \prod (F_i)^{w_i}$ bezüglich den SSA Amplituden

polarisiertes H-Target:

Die Collinsamplitude der Pionen:

Resultate der Collinsamplitude: $\delta q\left(x
ight)\otimes H_{1}^{\perp q}\left(z
ight)$ aus den 2002–2005 Daten:

- positive Amplitude für π^+
- negative Amplitude f
 ür π⁻ (unerwartet groß)
- $\bullet \ H_{1}^{\perp, \mathrm{unfav}}\left(z\right) \approx -H_{1}^{\perp, \mathrm{fav}}\left(z\right)$
- Collinsamplituden erfüllen Isospinsymmetrie
- Extraktion der Transversity-Verteilung durch unabhängige Messung der Collins Fragmentationsfunktion (BELLE)

Die Collinsamplitude der geladenen Kaonen:

Resultate der Collinsamplitude:

 $\delta q\left(x
ight)\otimes H_{1}^{\perp q}\left(z
ight)$ aus 2002–2005 Daten:

- keine signifikanten (von Null verschiedenen)
 Collinsamplituden für geladene Kaonen
- K^+ -Collinsamplitude innerhalb der Fehler konsistent mit der für π^+

Die Siversamplituden der Pionen:

Resultate der Siversamplitude:

 $f_{1T}^{\perp q}\left(x
ight)\otimes D_{1}^{q}\left(z
ight)$ aus den 2002–2005 Daten:

- signifikant positive Siversamplitude für π^+
- impliziert nicht verschwindenden Bahndrehimpuls L_z^q
- Siversamplitude für π^- konsistent mit Null
- Siversamplituden erfüllen Isospinsymmetrie
- Extraktion der Siversfunktion aus Kenntnis der spinunabhängigen Fragmentationfunktion $D_1^q(z)$

Die Siversamplitude der geladenen Kaonen:

Resultate der Siversamplitude:

 $f_{1T}^{\perp q}\left(x
ight)\otimes D_{1}^{q}\left(z
ight)$ aus 2002–2005 Daten:

- signifikant positive
 Siversamplitude f
 ür K⁺
- impliziert nicht verschwindenden Bahndrehimpuls L_z^q
- Siversamplitude f
 ür K⁻ konsistent mit Null.
- Siversamplitude für K^+ größer als diejenige der π^+
 - Beitrag der Seequarks zum
 Siversmechanismus könnte
 bedeutend sein

In aller Kürze:

- genaueste Messung am transversal polarisierten Wasserstoff-Target
- signifikante Collinsamplituden f
 ür Pionen
 - Extraktion der Transversity-Verteilung (Anselmino u.a.)

- signifikante Siversamplituden für π^+ und K^+
 - ► Nachweis einer naive time reversal odd Partonverteilung

Exklusive

Vektormesonenereignisse

Exklusive Ereignisse im semi-inklusiven Datensatz:

