Signals for transverse-momentum dependent quark distributions studied at the HERMES experiment

Markus Diefenthaler

on behalf of the collaboration

19th International Spin Physics Symposium, September 28th 2010 – p.1/25

The spin structure of the nucleon:

Angular momentum sum rule:

$$\frac{s_z^N}{\hbar} = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$$

Known contributions:

 $\left| \, p \, \right\rangle = \left| \, uud \, \right\rangle, \left| \, n \, \right\rangle = \left| \, ddu \, \right\rangle$

Investigation of quark orbital angular momentum:

correlating the position of partons with their momenta probing spin-orbit correlations

Leading-twist representation of the nucleon structure:

• description of the nucleon structure **including** p_T :

$$\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} + \lambda \gamma^{+} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \qquad \left[f_{1}^{q} + S_{T}^{i} \epsilon^{ij} p_{T}^{j} \frac{1}{M} f_{1\mathsf{T}}^{\perp,q} + \lambda \Lambda g_{1}^{q} + \lambda S_{T}^{i} p_{T}^{i} \frac{1}{M} g_{1\mathsf{T}}^{\perp,q} \right],$$

$$\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} - s_{T}^{j} i \sigma^{+j} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \qquad \left[f_{1}^{q} + S_{T}^{i} \epsilon^{ij} p_{T}^{j} \frac{1}{M} f_{1\mathsf{T}}^{\perp,q} + s_{T}^{i} \epsilon^{ij} p_{T}^{j} \frac{1}{M} h_{1}^{\perp,q} + s_{T}^{i} S_{T}^{i} h_{1}^{q} + s_{T}^{i} S_{T}^{i} h_{1}^{q} + s_{T}^{i} \left(2 p_{T}^{i} p_{T}^{j} - p_{T}^{2} \delta^{ij} \right) S_{T}^{j} \frac{1}{2M^{2}} h_{1\mathsf{T}}^{\perp,q} + s_{T}^{i} S_{T}^{i} p_{T}^{i} \frac{1}{M} h_{1}^{\perp,q} \right],$$

quark λ and nucleon helicity Λ , transverse spins s_T and S_T of quarks and nucleons

- transverse-momentum-dependent PDF
 - related to spin-orbit correlations
 - constraints on orbital angular momentum (contributions)?
- **naive-T-odd** Sivers $f_{1T}^{\perp,q}$ and Boer–Mulders $h_1^{\perp,q}$ functions
 - initial- or final-state interactions / transverse SSA
 - profound consequences on factorisation and universality

Transverse single-spin asymmetries:

• Observation of single-spin asymmetries:

• Global analysis of:

transverse-momentum-dependent PDF

The Sivers mechanism:

- Sivers function $f_{\mathbf{1T}}^{\perp}\left(\boldsymbol{x},\boldsymbol{p_T}^{2}\right)$: $N^{\uparrow}q^{\uparrow} \rightarrow N^{\Downarrow}q^{\uparrow}$
- orbital angular momentum of quarks:

- final-state interaction:
 - left-right asymmetry of quark distribution
 - left-right-asymmetry of momentum distribution of hadrons

• structure function:
$$F_{UT,T} = -\mathcal{C}\left[\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{p_T}}{M}f_{1T}^{\perp}\left(x,\boldsymbol{p_T}^2\right)D_1\left(z,z^2\boldsymbol{k_T}^2\right)\right]$$

The Collins mechanism:

• transversity distribution h_1 :

helicity flip: $N^{\uparrow}q^{\downarrow} \rightarrow N^{\Downarrow}q^{\uparrow}$ \clubsuit chiral odd

• Collins fragmentation function $H_1^{\perp}(z, z^2 k_T^2)$:

• structure function: $F_{UT} = -\mathcal{C}\left[\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k_T}}{M_h} h_1\left(x, \boldsymbol{p_T}^2\right) H_1^{\perp}(z, z^2 \boldsymbol{k_T}^2)\right]$

The deep-inelastic scattering process:

Lepton scattering by single-photon exchange:

kinematics:

semi-inclusive measurement: $lN \rightarrow lhX$

19th International Spin Physics Symposium, September 28th 2010 - p.7/25

Fourier decomposition of transverse SSA:

Measurement of azimuthal single-spin asymetries $A_{UT}(\phi, \phi_S)$:

 $\boldsymbol{P}_{h\perp} = \boldsymbol{z}(\boldsymbol{p}_T - \boldsymbol{k}_T)$

 $\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\boldsymbol{P}_{h\perp}^{2}} \propto \dots \sin\left(\phi-\phi_{S}\right)F_{UT,T}^{\sin\left(\phi-\phi_{S}\right)} + \sin\left(\phi+\phi_{S}\right)F_{UT}^{\sin\left(\phi+\phi_{S}\right)}\dots$

Sivers mechanism: $sin (\phi - \phi_S)$ Collins mechanism: $sin (\phi + \phi_S)$

The HERMES polarised DIS scattering experiment:

well-suited for measurements of azimuthal asymmetries

- polarised hydrogen **gas target** internal to the HERA storage ring
 - background-free measurements from highly polarised nucleons
 - substantial reduction of time-dependent systematics
- very clean lepton-hadron separation and hadron identification

Evidence for naive-T-odd Sivers function:

Evidence for naive-T-odd Sivers function

The Sivers amplitudes for π -mesons:

Results for Sivers amplitude: $f_{1T}^{\perp q}\left(x
ight)\otimes D_{1}^{q}\left(z
ight).$

from 2002-2005 data:

- significantly positive for π^+ $\Rightarrow f_{1T}^{\perp,u} < 0, L_z^u > 0$
- significantly positive for π^0
- consistent with zero for π^- • $f_{1T}^{\perp,d} > 0$?
- increase with z for π^+ and π^0
- $P_{h\perp} \rightarrow 0.0 \, \text{GeV}$: linear decrease
- $P_{h\perp} > 0.4 \, \text{GeV}$: saturation for π^+
- isospin symmetry fulfilled

The Sivers amplitudes for charged K-mesons:

Results for Sivers amplitude: $f_{1T}^{\perp q}\left(x
ight)\otimes D_{1}^{q}\left(z
ight).$

from 2002–2005 data:

- significantly positive for K^+ $\Rightarrow f_{1T}^{\perp,u} < 0, L_z^u > 0$
- significantly positive for K^-
- increase with z
- $P_{h\perp} \rightarrow 0.0 \, \text{GeV}$: linear decrease
- $P_{h\perp} > 0.4 \, \text{GeV}$: saturation for K^+

The Sivers amplitudes for the pion-difference SSA:

interpretation in terms of valence-quark distribution solely:

The role of higher twist terms:

Sivers amplitude:

$$2\left\langle \sin\left(\phi-\phi_{S}\right)\right\rangle_{\mathsf{UT}} \propto F_{UT,T}^{\sin\left(\phi-\phi_{S}\right)} + \epsilon F_{UT,L}^{\sin\left(\phi-\phi_{S}\right)}$$

•
$$F_{UT,T}^{\sin(\phi-\phi_S)} = -\mathcal{C}\left[\frac{\hat{h}\cdot p_T}{M}f_{1T}^{\perp}D_1\right]$$

• $F_{UT,L}^{\sin(\phi-\phi_S)} = 0$ (leading twist and subleading twist accuracy) • $\frac{P_{h\perp}^2}{z^2Q^2}$ -suppressed compared to $F_{UT,T}$

 $^{\circ}$ generated by α_s -corrections at high transverse momentum

Examination of other $1/Q^2$ -suppressed contributions:

19th International Spin Physics Symposium, September 28th 2010 - p.15/25

Sivers amplitudes for K^+ and π^+ :

- *u*-quark dominance: $2\langle \sin(\phi \phi_S) \rangle_{UT}^{\pi^+} \sim 2 \langle \sin(\phi \phi_S) \rangle_{UT}^{K^+}$
- difference in K^+ and π^+ Sivers amplitudes:

- significant role of other quark flavours?
- higher twist effects in kaon-production?

The hunt for transversity:

The hunt for transversity

The Collins amplitudes for pions:

Results of the Collins amplitude: $h_{1}^{q}\left(x
ight)\otimes H_{1}^{\perp q}\left(z
ight)$ from 2002–2005 data:

- positive amplitudes for π^+
- large negative π^- amplitudes unexpected

•
$$H_1^{\perp, \mathrm{unfav}}\left(z
ight) pprox - H_1^{\perp, \mathrm{fav}}\left(z
ight)$$

• isospin symmetry of π -mesons fulfilled

The Collins amplitudes for kaons:

Results of the Collins amplitude: $h_{1}^{q}\left(x
ight)\otimes H_{1}^{\perp q}\left(z
ight)$ from 2002–2005 data:

- positive amplitudes for K^+
- *K*⁻amplitudes consistent with zero

Single-hadron production:

$$\begin{aligned} d\sigma &= d\sigma_{UU}^{0} + \cos 2\phi \ d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \ d\sigma_{LU}^{3} \\ &+ S_{L} \left\{ \sin 2\phi \ d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \ d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \ d\sigma_{LL}^{7} \right] \right\} \\ &+ S_{T} \left\{ \sin(\phi - \phi_{S}) \ d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \ d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \ d\sigma_{UT}^{10} \\ &+ \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \ d\sigma_{UT}^{11} + \sin \phi_{S} \ d\sigma_{UT}^{12} \right) \\ \\ & \left\{ \frac{\sigma_{XX}}{Polarization} + \lambda_{e} \left[\cos(\phi - \phi_{S}) \ d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \ d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \ d\sigma_{LT}^{15} \right) \right] \right\} \end{aligned}$$

The $\langle \sin (3\phi - \phi_S) \rangle_{U\perp}$ Fourier component:

$$\begin{split} F_{UT}^{\sin(3\phi_h - \phi_S)} &= \\ \mathcal{C} \bigg[\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \right) \left(\boldsymbol{p}_T \cdot \boldsymbol{k}_T \right) + \boldsymbol{p}_T^2 \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \right) - 4\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \right)^2 \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \right)}{2M^2 M_h} h_{1T}^{\perp} H_1^{\perp} \bigg] \end{split}$$

- leading-twist $F_{UT}^{\sin(3\phi-\phi_S)}$ sensitive to pretzelosity h_{1T}^{\perp}
- $F_{UT}^{\sin(\phi \pm \phi_S)}$ expected to scale as $P_{h\perp}$
- $F_{UT}^{\sin(2\phi-\phi_S)}$ expected to scale as $(P_{h\perp})^2$
- F^{sin (3φ−φ_S)} expected to scale as (P_{h⊥})³
 ⇒ suppressed w.r.t. Collins and Sivers amplitudes

The $\langle \sin (3\phi - \phi_S) \rangle_{U\perp}$ Fourier component:

19th International Spin Physics Symposium, September 28th 2010 - p.21/25

The $\langle \sin (2\phi - \phi_S) \rangle_{U\perp}$ Fourier component:

$$F_{UT}^{\sin(2\phi_{h}-\phi_{S})} = \frac{2M}{Q} C \left\{ \frac{2(\hat{h}p_{T})^{2} - p_{T}^{2}}{2M^{2}} \left(xf_{T}^{\perp}D_{1} - \frac{M_{h}}{M}h_{1T}^{\perp}\frac{\tilde{H}}{z} \right) - \frac{2(\hat{h}k_{T})(\hat{h}p_{T}) - k_{T}p_{T}}{2MM_{h}} \left[\left(xh_{T}H_{1}^{\perp} + \frac{M_{h}}{M}g_{1T}\frac{\tilde{G}^{\perp}}{z} \right) + \left(xh_{T}^{\perp}H_{1}^{\perp} - \frac{M_{h}}{M}f_{1T}^{\perp}\frac{\tilde{D}^{\perp}}{z} \right) \right] \right\}$$

- $F_{UT}^{\sin(\phi \pm \phi_S)}$ expected to scale as $P_{h\perp}$
- $F_{UT}^{\sin(2\phi-\phi_S)}$ expected to scale as $(P_{h\perp})^2$
 - suppressed w.r.t. Collins and Sivers amplitudes

The $\langle \sin (2\phi - \phi_S) \rangle_{U\perp}$ Fourier component:

The $\langle \sin (2\phi + \phi_S) \rangle_{U\perp}$ Fourier component:

The $\langle \sin(\phi_S) \rangle_{U\perp}$ Fourier component:

$$F_{UT}^{\sin\phi_S} = \frac{2M}{Q} \quad \mathcal{C} \quad \left\{ \begin{array}{c} \left(xf_T D_1 - \frac{M_h}{M} h_1 \frac{\tilde{H}}{z} \right) \\ \\ - \frac{\mathbf{k}_T \mathbf{p}_T}{2MM_h} \left[\left(xh_T H_1^{\perp} + \frac{M_h}{M} g_{1T} \frac{\tilde{G}^{\perp}}{z} \right) \\ \\ - \left(xh_T^{\perp} H_1^{\perp} - \frac{M_h}{M} f_{1T}^{\perp} \frac{\tilde{D}^{\perp}}{z} \right) \right] \right\}$$

- calculated at leading-twist and subleading-twist accuracy
- 1/Q-suppressed w.rt. $F_{UT}^{\sin(\phi+\phi_S)}$, $F_{UT}^{\sin(\phi-\phi_S)}$ and $F_{UT}^{\sin(3\phi-\phi_S)}$
- $F_{UT}^{\sin(\phi+\phi_S)}$ and $F_{UT}^{\sin(\phi-\phi_S)}$ are $P_{h\perp}$ -suppressed w.r.t. $F_{UT}^{\sin\phi_S}$

The $\langle \sin(\phi_S) \rangle_{U\perp}$ Fourier component:

• using relations between T-even functions:

$$xh_T = x\tilde{h}_T - h_1 + \frac{p_T^2}{2M^2}h_{1T}^{\perp} + \frac{m}{M}g_{1T}$$

$$xh_T^{\perp} = x\tilde{h}_T^{\perp} + h_1 + \frac{p_T^2}{2M^2}h_{1T}^{\perp}$$

$$F_{UT}^{\sin\phi_S} = \frac{2M}{Q} \quad \mathcal{C} \quad \left\{ \begin{array}{c} \left(xf_T D_1 - \frac{M_h}{M} h_1 \frac{\tilde{H}}{z} \right) \\ - \frac{k_T p_T}{2MM_h} \left[\left(-h_1 H_1^{\perp} + \frac{1}{M} g_{1T} \left(m H_1^{\perp} + \frac{M_h}{z} \tilde{G}^{\perp} \right) \right) \right. \\ \left. - \left(h_1 H_1^{\perp} - \frac{M_h}{M} f_{1T}^{\perp} \frac{\tilde{D}^{\perp}}{z} \right) \right] \right\}$$

• Wandzura-Wilczek approximation: $F_{UT}^{\sin \phi_S} \propto F_{UT}^{\sin (\phi + \phi_S)}$

The $\langle \sin(\phi_S) \rangle_{U\perp}$ Fourier component:

Pioneering HERMES results:

- (most) precise analysis of transverse SSA in semi-inclusive DIS
- investigation of σ_{UT}
- significant Collins amplitudes for π⁺, π[−] and K⁺
 ⇒ enables quantitative extraction of transversity distribution
- significant Sivers amplitudes for π⁺, π⁰, K⁺and K⁻
 ⇒ clear (and first) evidence of naive-T-odd Sivers function
 ⇒ enables quantitative extraction of the Sivers function
 ⇒ test of universality (f^{⊥,u}_{1T} < 0), constraints on L^q_z?
- signals for pretzelosity distribution cannot be isolated
- non-vanishing amplitudes for the $sin(\phi_S)$ modulation
 - ➡ alternative measurement of transversity?
 - test of the Wandzura-Wilczek approximation?
- non-zero signals for worm-gear distribution $h_{1L}^{\perp,q}$ only for K^+
- **Outlook:** study of worm-gear distribution $g_{1T}^{\perp,q}$ in analysis of A_{LT}^{h}