

Hard exclusive reactions and **General Parton Distributions** at HERMES

Michael D Michael Düren

Universit Universitä t Gie ßen

— New Trends in HERA Physics 2008, Ringberg Castle, Oct. 6, 2007 — * Reuse of some transparencies from X. Ji, S. Yaschenko, and others

Proton spin structure

Generalized Parton Distributions

Quantum phase-space "tomography" of the nucleon

Wigner distribution in QM phase-space

- \blacksquare A classical particle is defined by its coordinate and momentum (x,p): momentum (x,p): **phase -space**
- \blacksquare A state of a classical identical particle system can be **described by a phase-space distribution f(x,p).** The time evolution of $f(x,p)$ obeys the Boltzmann equation.
- \blacksquare In quantum mechanics, because of the uncertainty principle, the phase-space distributions seem useless, but…

Wigner distribution in QM phase-space

- **STATE • Wigner introduced the first phase-space distribution** in quantum mechanics (1932)
- **Wigner function:**

Wigner function

$$
W(x,p) = \int \psi^*(x-\eta/2)\psi(x+\eta/2)e^{ip\eta}d\eta,
$$

- **The Integrating** $W(x, p)$ **over x results in the momentum density.**
- ٠ **The Integrating** $W(x, p)$ **over p results in the probability density.**
- \blacksquare Any dynamical variable can be calculated from it!

The Wigner function contains the most complete (one-body) info about a quantum system.

- ٠ In analogy, a Wigner operator can be defined that describes quarks in the nucleon
- \blacksquare The reduced Wigner distribution is related to Generalized parton distributions (GPDs)

M. Düren, Univ. Giessen 6

!

What is a GPD?

- A proton matrix element which is a hybrid of elastic form factor and Feynman distribution
- Depends on

 x : fraction of the longitudinal momentum carried by parton

 $t = q^2$: t-channel momentum transfer squared

ξ: skewness parameter

There are 4 important GPDs (among others):

 $H^q(x,\xi,t), E^q(x,\xi,t), \widetilde{H}^q(x,\xi,t), \widetilde{E}^q(x,\xi,t)$

Limiting cases: Limiting cases:

■ ^t→0: Ignoring the impact parameters leads to ordinary **parton distributions**

> $(x) = \widetilde{H}^{q}(x,0,0)$ $(x) = H^{q}(x,0,0)$ $q(x) = H^{q}(x)$ $q(x) = H^q(x)$ *q q* $\Delta q(x) =$ =

■ Integrating over x: Parton momentum information is lost, spatial distributions = **form factors** remain

$$
F_1^q(t) = \int H^q(x,\xi,t) dx
$$

$$
F_2^q(t) = \int E^q(x,\xi,t) dx
$$

7

 $f(x,r_1)$

 r_{\perp}

 θ

3-D contours of quark distributions for various x

Fits to the known form factors and parton distributions $\hspace{0.1cm}$ with additional theoretical constraints (e.g. polynomiality) and model assumptions

Quarks in quantum mechanical phase-space

- $\mathcal{L}_{\mathcal{A}}$ Generalized parton distributions (GPDs) are reduced Wigner $\overline{\textsf{functions}}\to\textsf{correlation}$ in phase-space \to e.g. the orbital momentum of quarks: *L* = *r* × *p*
- $\mathcal{L}_{\mathcal{A}}$ Angular momentum of quarks can be extracted from GPDs:

X. Ji relation:
$$
J^{q} = \lim_{t \to 0} \int_{0}^{1} x dx \Big[H^{q}(x, \xi, t) + E^{q}(x, \xi, t) \Big]
$$

 \mathcal{L} GPDs provide a unified theoretical framework for many experimental processes

Universality of GPDs

Hard exclusive reactions

Experimental access to GPDs Experimental access to GPDs

Hard exclusive reactions

Quantum number of final state selects different GPDs: Vector mesons $(ρ, ω, φ)$: H E

Pseudoscalar mesons (π, η) : $\mathbf{\tilde{H}}$ $\mathbf{\tilde{E}}$

DVCS (γ) depends on H, E, \tilde{H} , \tilde{E}

Deeply virtual Compton scattering (DVCS)

DVCS is the cleanest way to access GPDs: $\gamma^\star \mathsf{N} \mathbin{\rightarrow} \gamma \mathsf{N}$

GPDs = probability amplitude for a nucleon to emit a parton with (A+ξ) and to absorb it with momentum fraction (A-ξ)

M. Düren, Univ. Giessen
$$
\begin{vmatrix} \xi & \approx & \frac{x_B}{2 - x_B} \end{vmatrix}
$$
 13

Factorization theorem

DVCS and BH Interference (ep→e'γp)

Laser and nucleon holography

(Belitsky/Mueller)

M. Düren, Univ. Giessen 15

Azimuthal dependencies

M. Düren, Univ. Giessen 16

Measured azimuthal asymmetries

Cross Section \mathbf{r} $\sigma_{III}(\phi; P_{B}, C_{B}) = \sigma_{III} [1 + P_{B} A_{III}^{DVCS} + C_{B} P_{B} A_{III}^{I} + C_{B} A_{C}]$ **•** Beam Spin Asymmetry $A_{LU}^{DVCS}(\phi) = \frac{1}{D(\phi)} \cdot \frac{x_B^2 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)}{O^2} s_1^{DVCS} \sin(\phi)$ $A_{LU}^I(\phi) = \frac{1}{D(\phi)} \cdot \frac{x_B^2}{Q^2} [s_1^I \sin(\phi) + s_2^I \sin(2\phi)]$ **•** Beam Charge Asymmetry $A_C(\phi) = -\frac{1}{D(\phi)} \cdot \frac{x_B^2}{v} \left[c_0^I + c_1^I \cos(\phi) + c_2^I \cos(2\phi) + c_3^I \cos(3\phi) \right]$

Dilution factor through lepton propagators $\mathcal{P}_1(\phi), \mathcal{P}_2(\phi)$ \bullet

$$
D(\phi) = \frac{\sum_{n=0}^{2} c_n^{BH} \cos(n\phi)}{(1+\varepsilon^2)^2} + \frac{x_B^2 t P_1(\phi) P_2(\phi)}{Q^2} \sum_{n=0}^{2} c_n^{DVCS} \cos(n\phi)
$$

Connection to GPDs

- Data with different beam charges and beam helicities were combined and fit simultaneously
- Connections to GPDs (leading contributions)

$$
c_1^I \propto \frac{\sqrt{-t}}{Q} \Re e \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right] \propto -\frac{Q}{\sqrt{-t}} c_0^I
$$

$$
s_1^I \propto \frac{\sqrt{-t}}{Q} \Im m \left[F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]
$$

where H, H, E, \widetilde{E} are Compton form factors - convolutions of hard scattering amplitude and twist-2 GPDs $H, \widetilde{H}, E, \widetilde{E}$ F_1, F_2 are Dirac and Pauli form factors of the nucleon

M. Düren, Univ. Giessen 18

GPD Models

· VGG model (Vanderhaeghen, Guichon, Guidal 1999):

- Based on double distributions
- Includes a D-term to restore full polynomiality
- Includes a Regge inspired and a factorized t-ansatz
- Skewness depending on free parameters b_{val} and b_{sea}
- Includes twist-3 contributions
- O Dual model: (Guzey, Teckentrup 2006)
	- GPDs based on an infinite sum of t-channel resonances
	- Includes a Regge inspired and a factorized t-ansatz
	- Does not include twist-3

Experimental results

Asymmetries

DVCS: Selection of exclusive events

Identification by missing mass technique (ep $\rightarrow e^{\prime} \gamma X$)

- Associated Bethe-Heitler $ep \rightarrow e' \Delta^{\dagger} \gamma$ ~12% stays part of the signal
- from Monte Carlo

Beam charge asymmetry (1996-2005)

The factorized ansatz and the VGG variant with the D-term are dis-favored by \mathbf{C} the beam charge asymmetry

M. Düren, Univ. Giessen 22

Beam spin asymmetry (1996-2005)

Pure DVCS squared asymmetries are compatible with zero, in agreement with \bullet model assumptions

Beam spin asymmetry (1996-2005)

Result agrees with Dual model predictions, but fractions of associated productions are not corrected for

M. Düren, Univ. Giessen 24

Deuterium – – Hydrogen comparison

P. Proton (black) and Deuteron (red) data are compatible for almost all amplitudes

Transverse target spin asymmetry (TTSA) Transverse target spin asymmetry (TTSA)

- Results on transverse target spin asymmetry are published [A. Airapetian et al, JHEP 06 (2008) 066]
- Data with Transversely Polarized Target (2002-2005) \bullet
- **Access to GPD F**
- Model-dependent constraints on J_u , J_d
	- Two GPD models (Double Distribution and Dual Parameterization)
- Comparison with JLAB data on neutron cross section data
- Comparison with lattice QCD calculations

Transverse target spin asymmetry (TTSA)

Sensitivity of GPD model predictions to J_u at fixed $J_d=0$ [Phys. Rev. D74(2006) 054027]

M. Düren, Univ. Giessen 27

Angular momentum: model dependent result Angular momentum: model dependent result

$$
\chi^2(J_u,J_d)=\left(A_{UT,I}^{\sin{(\phi-\phi_s)}\text{cos{n}}\phi}|_{exp}-A_{UT,I}^{\sin{(\phi-\phi_s)}\text{cos{n}}\phi}|_{theo}(J_u,J_d)\right)^2\left/ \left(\delta A_{stat}^2+\delta A_{syst}^2\right)\right.
$$

 \bullet J_u, J_d are free parameters in GPD models

• Double Distribution (DD) [Phys.Rev.D 60 (1999) 094017, Prog. Part. Nucl. Phys. 47(2001)401]

 $J_{\rm u}+J_{\rm d}/2.8=0.48\pm0.17$

• Dual Parameterization (Dual) [hep-ph/0207153, Phys. Rev. D74(2006) 054027]

 $J_{\rm u}+J_{\rm d}/2.8=-0.02\pm0.27$

- Jlab DD (neutron cross section data) [Phys. Rev. Lett. 99(2007)242501]
	- Lattice calculations QCDSF, LHPC

Experimental results

Many results
…on exclusive meson production

... here only one example

Exclusive π ⁺ differential cross section

- σ_T predicted to be 15-25% of σ power corrections due to intrinsic k_{\perp} (about 6% at low t') and soft-overlap contribution
- agreement with data only at lower t'
- \Rightarrow Power corrections are needed! Fair \Rightarrow Good description of magnitude
and $-t', Q^2$ dependences of the data

HERMES recoil detector

Hard exclusive scattering

Hermes with recoil detector

Two beam helicities, electron and positron beams \bullet

HERMES recoil detector

1 Tesla Superconducting Solenoid

Photon Detector (PD)

3 layers of tungsten-scintillator detect gammas, p/π PID

Scintillating Fiber Tracker (SFT)

2 barrels of scintillation fibers with 2 parallel and 2 stereo layers Momentum reconstruction by bending in magnetic field

Silicon Strip Detector (SSD)

Momentum reconstruction by energy
deposit for low-momentum protons and deuterons

Inside the HERA vacuum

Target Cell of Unpolarized Target

Novel techniques: Recoil detector for exclusive physics

Silicon Detector

- Inside beam vacuum
- 16 double-sided sensors
- Momentum reconstruction & PID

Scintillating Fiber Detector

- 2 barrels
- 2x2 parallel and 2x2 stereo layers
- 10° stereo angle
- Momentum reconstruction & PID

1 Tesla superconducting solenoid **Photon Detector**

- 3 layers of tungsten/scintillator
- PID for higher momenta $_{34}$
- detects

Recoil proton identification

Silicon Strip Detector

Scintillating Fiber Tracker

Universality of the concept...

GPDs at FAIR

Handbag diagram at proton-antiproton annihilation (e.g. PANDA/FAIR) Generalized distribution amplitudes

M. Düren, Univ. Giessen 38

Measure multidimensional GPDs in detail

Now as HERA has been retired, we need a new polarized high luminosity e-p collider

Conclusions and Outlook

- **Service Service** New concepts of GPDs, Double Distributions, etc. are used to describe hard exclusive reactions, especially DVCS asymmetries
- HERMES and JLab have done first explorative measurements of the orbital angular momentum of quarks in the proton
- **Service Service** Results are consistent with models of the nucleon and with lattice QCD calculations
- New exclusive data from HERMES using the recoil detector are being analyzed
- GPDs are also important for experiments GPDs are also important for experiments at FAIR and LHC
- A precision mapping of GPDs requires a polarized high luminosity ep-collider, e.g. at FAIR

