

Eduard Avetisyan

PANIC08, Eilat

E.Avetisyan (HERMES-DESY)

DVCS TTSA

PANIC08, Eilat 1 / 16

From Flat to 3D

Form factors

transverse charge

Parton density

longitudinal momentum and helicity

< ロ > < 同 > < 回 > < 回 >

DVCS TTSA

э

From Flat to 3D

Generalized Parton Distributions

• Quantum numbers of final state selects different GPDs

 \circledast DVCS (γ): all GPDs *H*, *E*, \widetilde{H} , \widetilde{E}

- * vector mesons (ρ , ω , ϕ): unpolarized GPDs *H*, *E*
- \circledast pseudoscalar mesons (π , η): polarized GPDs H, E

Generalized Parton Distributions

• Quantum numbers of final state selects different GPDs

 \circledast DVCS (γ): all GPDs *H*, *E*, \widetilde{H} , \widetilde{E}

- * vector mesons (ρ , ω , ϕ): unpolarized GPDs *H*, *E*
- \circledast pseudoscalar mesons (π , η): polarized GPDs H, E

What can we learn from GPDs?

Proton Spin (HERMES, Phys. Rev. D 75 (2007) 012007)

$$\frac{1}{2} = \underbrace{\frac{1}{2}(\Delta u + \Delta d + \Delta s + L_q}_{J_q} + J_g$$

 Δq : well known from DIS & SIDIS

GPDs allow access to J_q , J_g through Ji's sum rule:

$$J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \cdot x \cdot [H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)]$$

The HERA Accelerator

글 🕨 🔺 글 🕨

< 17 > <

E.Avetisyan (HERMES-DESY)

PANIC08, Eilat 6 / 16

3

(日) (同) (三) (三)

(日) (同) (三) (三)

Measurement of DVCS

• No recoil proton detection (1996-2005) \Rightarrow missing mass technique used

•
$$M_x^2 = (P_e + P_p - P_{e'} - P_{\gamma})^2$$

• SIDIS (π^0) Background contribution $\sim 5\%$ estimated from MC

 $e + N \rightarrow e' + \gamma + N'$

- The simplest probe of GPDs (no gluons in the leading order)
- Same final state in DVCS and Bethe-Heitler \Rightarrow Interference!
- $d\sigma(\text{eN} \to \text{eN}\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \frac{\mathcal{T}_{BH}\mathcal{T}_{DVCS}}{\mathcal{T}_{BH}\mathcal{T}_{DVCS}} + \frac{\mathcal{T}_{BH}^*\mathcal{T}_{DVCS}}{\mathcal{T}_{BH}\mathcal{T}_{DVCS}}$

• $|\mathcal{T}_{BH}|^2 >> |\mathcal{T}_{DVCS}|^2$ at HERMES \rightarrow no direct X-section measurement

Good news: *I* interference term allows access to (certain) GPD combinations through asymmetries!

3

(日) (同) (三) (三)

All the glory of the asymmetries! Interference term \mathcal{I} induces azimuthal asymmetries in cross-section:

- ► Beam-charge asymmetry $A_{\mathcal{C}}(\phi)$: $d\sigma(e^+, \phi) - d\sigma(e^-, \phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos \phi$
- ► Beam-spin asymmetry $A_{LU}(\phi)$: $d\sigma(\vec{e}, \phi) - d\sigma(\vec{e}, \phi) \propto \text{Im}[F_1\mathcal{H}] \cdot \sin \phi$
- ► Long. target-spin asymmetry $A_{UL}(\phi)$: $d\sigma(\overleftarrow{P}, \phi) - d\sigma(\overrightarrow{P}, \phi) \propto \text{Im}[F_1\widetilde{\mathcal{H}}] \cdot \sin \phi$

・ロト ・回ト ・ヨト ・ヨト

• Transverse target-spin asymmetry $A_{UT}(\phi, \phi_s)$

 $d\sigma(\phi,\phi_{S}) - d\sigma(\phi,\phi_{S}+\pi) \propto \operatorname{Im}[F_{2}\mathcal{H} - F_{1}\mathcal{E}] \cdot \sin(\phi - \phi_{S}) \cos\phi$ $+ \operatorname{Im}[F_{2}\mathcal{H} - F_{1}\mathcal{E}] \cdot \sin(\phi - \phi_{S}) + \dots$

 \Rightarrow TTSA is the only DVCS asymmetry where \mathcal{E} enters in leading order As models for \mathcal{E} depend on $J_q \Longrightarrow A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ is sensitive to J_q !

 $(F_1, F_2$ are the Dirac and Pauli form factors, calculable in QED) $(\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$ are the Compton form factors, moments of corresponding GPDs)

All the glory of the asymmetries!

Interference term \mathcal{I} induces azimuthal asymmetries in cross-section:

- Beam-charge asymmetry $A_C(\phi)$: $d\sigma(e^+,\phi) - d\sigma(e^-,\phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos\phi$
- Beam-spin asymmetry $A_{LU}(\phi)$: $d\sigma(\vec{e}, \phi) - d\sigma(\vec{e}, \phi) \propto \text{Im}[F_1\mathcal{H}] \cdot \sin \phi$
- Long. target-spin asymmetry $A_{UL}(\phi)$: $d\sigma(\overleftarrow{P}, \phi) - d\sigma(\overrightarrow{P}, \phi) \propto \operatorname{Im}[F_1 \widetilde{\mathcal{H}}] \cdot \sin \phi$

<ロ> (四) (四) (三) (三) (三) (三)

- $d\sigma(\phi,\phi_S) d\sigma(\phi,\phi_S+\pi) \propto \operatorname{Im}[F_2\mathcal{H} F_1\mathcal{E}] \cdot \sin(\phi-\phi_S)\cos\phi$ + Im[$F_2\mathcal{H} - F_1\mathcal{E}$] · sin ($\phi - \phi_S$) + ...
- \Rightarrow TTSA is the only DVCS asymmetry where \mathcal{E} enters in leading order As models for \mathcal{E} depend on $J_a \Longrightarrow A_{\text{UT}}^{\sin(\phi-\phi_{\text{S}})\cos\phi}$ is sensitive to J_a !

 $(F_1, F_2$ are the Dirac and Pauli form factors, calculable in QED) $(\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}})$ are the Compton form factors, moments of corresponding GPDs)

Extraction Procedure

Used Maximum Likelihood method with simultaneous extraction of Beam-charge and Target-Spin Asymmetry amplitudes by minimizing

$$\begin{split} -\ln \mathcal{L}(\boldsymbol{\eta}_{\mathrm{UT}}^{\mathrm{DVCS}},\boldsymbol{\eta}_{\mathrm{C}},\boldsymbol{\eta}_{\mathrm{UT}}^{\mathrm{I}}) &= \widetilde{\mathcal{N}}_{\mathrm{par}}(\boldsymbol{\eta}_{\mathrm{UT}}^{\mathrm{DVCS}},\boldsymbol{\eta}_{\mathrm{C}},\boldsymbol{\eta}_{\mathrm{UT}}^{\mathrm{I}}) \\ &- \sum_{i=1}^{N_{\mathrm{o}}} \ln \Big[1 + S_{\perp}^{i} \mathcal{A}_{\mathrm{UT}}^{\mathrm{DVCS}}(\phi^{i},\phi^{i}_{S};\boldsymbol{\eta}_{\mathrm{UT}}^{\mathrm{DVCS}}) + e^{i}_{l} \mathcal{A}_{\mathrm{C}}(\phi^{i};\boldsymbol{\eta}_{\mathrm{C}}) \\ &+ e^{i}_{l} S_{\perp}^{i} \mathcal{A}_{\mathrm{UT}}^{\mathrm{I}}(\phi^{i},\phi^{i}_{S};\boldsymbol{\eta}_{\mathrm{UT}}^{\mathrm{I}}) \Big] \end{split}$$

Allows separation of **DVCS** and **Interference** terms with same harmonic signature.

 A_C : Beam Charge Asymmetry

$$A_{c}(\phi) = \frac{d\sigma(e^{+}, \phi) - d\sigma(e^{-}, \phi)}{d\sigma(e^{+}, \phi) + d\sigma(e^{-}, \phi)} \propto \operatorname{Re}[F_{1}\mathcal{H}] \cdot \cos\phi$$

• DD model for proton from M.Vanderhaeghen et al (PRD 60 (1999) 094017)

• data taking years 2002-2005 with transverse target

HERMES, JHEP 06 (2008) 066

 $\begin{aligned} A_{\mathcal{C}}: \text{ Beam Charge Asymmetry} \\ A_{c}(\phi) &= \frac{d\sigma(e^{+}, \phi) - d\sigma(e^{-}, \phi)}{d\sigma(e^{+}, \phi) + d\sigma(e^{-}, \phi)} \propto \operatorname{Re}[F_{1}\mathcal{H}] \cdot \cos\phi \end{aligned}$

• DD model for proton from M.Vanderhaeghen et al (PRD 60 (1999) 094017)

• data taking years 2002-2005 with transverse target

HERMES, JHEP 06 (2008) 066

< ロ > < 同 > < 三 > < 三 >

Regge model without D-term favoured by the *t*-dependence of the BCA

 $\begin{aligned} A_{\mathcal{C}}: \text{ Beam Charge Asymmetry} \\ A_{c}(\phi) &= \frac{d\sigma(e^{+}, \phi) - d\sigma(e^{-}, \phi)}{d\sigma(e^{+}, \phi) + d\sigma(e^{-}, \phi)} \propto \operatorname{Re}[F_{1}\mathcal{H}] \cdot \cos\phi \end{aligned}$

• DD model for proton from M.Vanderhaeghen et al (PRD 60 (1999) 094017)

• data taking years 2002-2005 with transverse target

Transverse Target Spin Asymmetry A_{UT}

$$\begin{aligned} A_{UT}(\phi,\phi_{S}) &= \frac{1}{P_{T}} \cdot \frac{d\sigma(P^{\uparrow},\phi,\phi_{S}) - d\sigma(P^{\downarrow},\phi,\phi_{S})}{d\sigma(P^{\uparrow},\phi,\phi_{S}) + d\sigma(P^{\downarrow},\phi,\phi_{S})} \\ &\propto \quad \mathrm{Im}[F_{2}\mathcal{H} - F_{1}\mathcal{E}]\sin(\phi - \phi_{S})\cos\phi + \mathrm{Im}[F_{2}\mathcal{H} - F_{1}\mathcal{E}]\sin(\phi - \phi_{S}) \\ &+ \quad \mathrm{Im}[\mathcal{H}\mathcal{E}^{*} - \mathcal{E}\mathcal{H}^{*} + \xi\tilde{\mathcal{E}}\,\tilde{\mathcal{H}}^{*} - \tilde{\mathcal{H}}\,\xi\tilde{\mathcal{E}}^{*}]\sin(\phi - \phi_{S}) + \ldots \end{aligned}$$

E.Avetisyan (HERMES-DESY)

DVCS TTSA

PANIC08, Eilat 12 / 16

Transverse Target Spin Asymmetry A_{UT}

• $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ found much more sensitive to J_u than others

- insensitive to J_d , assumed $J_d = 0$ (supported by lattice QCD)
- allows a model-dependent constraint
- systematics controlled through Monte Carlo with 5 different model variants

E.Avetisyan (HERMES-DESY)

- Final transverse data fitted against the model
- J_u and J_d as free parameters
- Model-dependent constraints on linear communication of J_u, J_d = $\mathcal{O} \subseteq \mathcal{O}$

E.Avetisyan (HERMES-DESY)

DVCS TTSA

PANIC08, Eilat 13 / 16

Conclusions and Outlook

Conclusions

- ullet Full statistics ($\sim 170~{\rm pb}^{-1})$ with transverse polarization analyzed
- Pure hydrogen target with high polarization \Rightarrow low systematics!
- Extracted DVCS azimuthal asymmetries from Beam Charge and Transverse Target Spin ⇒ access GPDs H and E.
- Used the best knowledge available to construct a model dependent constraint on total angular momentum J_q of the quarks in proton

Outlook

- More data being analyzed for A_C to better constraint models
- Similar studies using exclusive ho^0 and π^+ underway
- Other models currently being investigated and developed
- Another step towards solving of the spin puzzle here

Forward limits (link to PDFs): $(t \rightarrow 0, \xi \rightarrow 0)$

Forward limits (link to PDFs): $(t \to 0, \xi \to 0)$ for quarks: $H^q(x, 0, 0) = q(x)$ for antiquarks: $H^q(x, 0, 0) = -\bar{q}(-x)$ for gluons: $H^g(x, 0, 0) = xg(x)$ $\widetilde{H}^g(x, 0, 0) = x\Delta g(x)$

No corresponding relation for polarised (E, E) GPDs \Rightarrow accessible ONLY in exclusive processes!

r 🖓

PANIC08, Eilat 15 / 16

Forward limits (link to PDFs): $(t \rightarrow 0, \xi \rightarrow 0)$

No corresponding relation for polarised (E, E) GPDs \Rightarrow accessible ONLY in exclusive processes!

Sum rules (link to Form Factors):

$$\int_{-1}^{+1} H^{q}(x,\xi,t)dx = F_{1}^{q}(t) \quad \int_{-1}^{+1} E^{q}(x,\xi,t)dx = F_{2}^{q}(t)$$
$$\int_{-1}^{+1} \widetilde{H}^{q}(x,\xi,t)dx = g_{A}^{q}(t) \quad \int_{-1}^{+1} \widetilde{E}^{q}(x,\xi,t)dx = h_{2}^{q}(t)$$

Ji sum rule - relation to total angular momentum! - Ji, PRL 78 (1997) 610 -

$$\frac{1}{2}\int_{-1}^{1}dx \times \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t)\right] \stackrel{t\to 0}{=} J_{q} = \frac{1}{2}\Delta\Sigma + L_{q}$$

Kinamatical Coverage of Experimental Data

collider experiments:

 $10^{-}4 < x_B < 0.021$: probing gluons

fixed target experiments:

- Compass 0.006 < x_B < 0.3 : gluons and quarks (q_ν + q_s)
- HERMES 0.02 < x_B < 0.3 : gluons and quarks (q_v + q_s)
- JLAB (@6GeV)0.13 < x_B < 0.6: quarks (valence)

