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The Spin Structure of the Nucleon

Naive Parton Model:��� � � �� � � �
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BUT

1988 EMC measured:�� = 0.123
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� � Spin Puzzle

F � from HERA tells:

Gluons are important !
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The Hunt for
% �

Study of hard exclusive processes leads to
a new class of PDFs

Generalised Parton Distributions�� � �� � � �� � � ��

� possible access to
orbital angular momentum

� � � �
�

� � � � � � �� � �� 	 	�
 �  � ��

exclusive processes: all products of a reaction are detected� � missing energy (

��

) and missing Mass (

��� ) = 0
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GPDs Introduction
quantum numbers of final state � select different GPDs
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DVCS: pseudo-scalar mesons vector mesons�� � �� � � �� � � �� � �� � � �� �� � ��

What does GPDs characterize?
unpolarized polarized�� � � � � � � 	 � �� � � � � � � 	

conserve nucleon helicity�� � � � � � � 	 � �� � � � � � � 	

flip nucleon helicity

�, �

,

�

defined on the light cone

�: longitudinal momentum fraction

�

: momentum transfer (

� � � �

)

�

: exchanged longitudinal momentum fraction (

� � ��� � �

� � ��� � � )
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GPDs Introduction II

� Link to DIS:

P

Im

Forward
  DVCS
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DIS ∆, ξ −−> 0

∆
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P +∆P -
2

x - ξ ξx +

γ∗ γ

GPD

γ∗

standard PDFs
and

do NOT appear in DIS
New Info !

Study GPDs
with spin observables
single spin azimuthal asymmetries
azimuthal asymmetries
via cross sections
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DVCS � � � ��� �

e’e

γ

p + ∆

γ∗

p

e
e’

γγ∗

p ∆p + 

DVCS Bethe-Heitler (BH)

��� � 	 
�� 	 � � 	 
��� �� 	 �

+

� 
� � 
��� � � � 
���� � � 
 � 	

HERMES, JLAB:
DVCS-BH interference:

� � use BH as a vehicle to study DVCS

H1, ZEUS:
measure DVCS cross section directly

HERMES / JLAB kinematics:
BH cross section larger than DVCS
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[Korotkov, Nowak, hep-ph/0108077]
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DVCS azimuthal asymmetries

��� � 	 
� 	 � � 	 
�� �� 	 �

+

� 
� � 
� � �� � 
� � � �� 
� 	
isolate BH-DVCS interference term � � non-zero azimuthal asymmetries

� imaginary part � beam helicity asymmetry:��� �� � � ��� � � �

� � � � 
 � 
� � �� 	

� � �
	 � � � �� � � � � � � 	

� asymmetry measured by HERMES and JLAB

� real part � beam charge asymmetry:��� � � � ��� �  � ��� � 
 � 
�� �� 	

� �� � � � � � � � � � � � � 	

� asymmetry measured by HERMES

� no polarized target needed
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�
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lepton scattering plane

and the � � � - plane
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DVCS at HERMES

(Not Detected)
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X

e
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γ
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p

� � Exclusivity has to be ensured by
missing mass: M

�� � � 	 � � � ��� 	 � � � ��
Energy resolution in exclusive region:� � � �� � 	�� 0.8 GeV

�� �
	� � � 	 �� � � 	
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Improve Exclusivity: detect recoil proton � planned for 2005/2006 data taking
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DVCS beam charge asymmetry (BCA)

�

��� � � � ��� �  sensitive to

�� � 
 � 
�� �� 	 � � �� � �
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DVCS single beam-spin asymmetry (BSA)

�

��� � � � � ��� � � � sensitive to

� � � 
� 
� � �� 	 � � � �	 �
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96/97: [PRL87 (2001), 182001] [PRL87 (2001), 182002]� � ��� �
�� � � 	 � � �
	 �� � �
	 � � �
	 � � � � � �
�� � � 	 � � �
	 � � � � �
	 � � � � � 	 � ��

at

��� � � ��� � �

,

�� � � � � � �

GeV

�

,

��� � � � �� �  
GeV

�

at � � ��� � � � �� � �

,

� � � � � � � �

GeV

�

,

� � � �� � � �� � �

GeV

�

GPD-calculation: [Kivel et al. Phys. Rev. D 63 (2001), 114014]
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Much more data!

�

��� � � � � ��� � � � sensitive to

� � � 
� 
� � �� 	 � � � �	 �
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x

<-t > = 0.18 GeV2, <xB> = 0.12, <Q2> = 2.5 GeV2

� all azimuthal asymmetries (BCA & BSA) appear at

� � 	 �


� enough statistics to study kinematic dependencies of GPDs

� DVCS data on polarized proton / deuterium target � � access to

� � � ��

� DVCS data on nuclear targets (D,

�

He, Ne, Kr)� � coherent scattering on a nucleus ?!E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 11



Exclusive PS meson production e p e

�

n � �

� cross section: � � 	� � 	 � �
	 ��� �� �
� �

� � has an interference between pole and non-pole amplitudes:�� � � � - FF

� � � � ���

� � large single spin asymmetry expected for transverse polarized H-target
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[ K. Goeke et al., hep-ph/0106012 ]
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Lets see what the data say !
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How to extract exclusive � �

� Production mechanismen: � �� � �  �
��� � �

� �

not detected

no exclusive production at a proton target
Trick: exclusive
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Exclusive � �

target - SSA

� until 2001 no data with transverse polarized proton target available� � use longitudinal polarized proton target
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~q

uli

transverse component to

cross section:

unpolarized polarized
beam target

suppressed by
but

HERMES: 0.17

Target Spin Asymmetry:
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Exclusive � �

target - SSA-Results
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� Asymmetry appears at

�� = Nucleon mass

�

� � � � �

� � � � �	 �� � �	 �� � �	 ��
at

� � � � � 	 � � � � � �� � � 	 � � 	 � � � � �� � � �	 	� � 	 � �

� more data needed � � transverse polarized target to study

� � � � �

E.C. Aschenauer 2003 CTEQ Summer School – Lecture II 15



Exclusive VM-production � � � ��� �� �
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� Recoiling proton is not
detected

� good determination of
exclusive channel
using

��

� DIS-‘background‘
well described by Monte Carlo

� deduce longitudinal
cross section from
decay angular distributions � 
 �

� 
 � 	
�

�
� � 
 � � � �


 � � 	
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Exclusive ��� for � �

-Production
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[ K. Goeke et al., hep-ph/0106012 ]

GPD calculations: � quark exchange mechanism dominates

� � �� �

p �� 
p) at low W

�

� 2-gluon exchange mechanism dominates

� � �� �
p �� 

p) at high W

�

and in � � �� �

p � �

p)
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Deep Inelastic Scattering Cross Section

Cross Section:

� � �� � �� � � � � � �
� � � �	� 
 ��� � � �

� �� �
� 
 ��  � � �

� �� �
leptonic hadronic

��� 
 � purely electromagnetic � � calculable in QED

� 


= � �� 
� � � �  ! � " # $ % $ &
 � � � �  ! � "

# ')( � 
 * � +, 

� � � � � ��  ! � " # �



�.-0/ � � � � �/ �- � � � � � �  ! � " "

(for spin 1) + quadrupole terms

�1 � 1 � 132  154 �

6 � , 687 
 � , 
 7 9 : Un- / Polarized Structure Functions

BUT
Quarks are relativistic, have intrinsic

;8< , masses and correlations
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DIS and SIDIS Cross Section

��� 9 ��� �� � � �<
�

�� � � ��� � � � � � �
�

� �
	 � ��� 7�� �

	 � �

� � � � � �	 � � ��� ��� � � �
�

� �
	 � ��� �� � � � � � � � � �� � � �
�

�� � � ��� 	� � �

	 
 � � � 	 
 � �

� �< � � �	 � � � ��� 	 ��� � < � � �	 �  � � ��� 	 ��� ��� < � �
�

� �
	 � � � � �� 	 ��� ��� < �

	 
 � 	 
 � � <

� � �< � �� � � � � ��� 	 ��� � � < � �
�

�� � � � � � ��� 	 ��� � �� < �

	 
 � <

� non zero Single Spin Azimuthal Asymmetries�� ���

Beam Target polarization Mulders and Tangermann (NP B 461 (1996) 197)
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Twist-2 Quark DF & FF

Distribution Functions (DF) Fragmentation Functions (FF)

=

=

=

f1

h1T

g1L g1T =

f1T =

h1 =

h1T =h1L =

=

=
1L

1

G

=H1T

=1TG

D

D1T

1H

=

=

H1L= H1T =

survive integration
The others are sensitive to intrinsic in the nucleon
& in the fragmentation process

: Sivers DF : std. unpol FF
: transversity : Collins FF
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... surviving

��� integration

1f =q
g =1 -q

1h = -q

Unpolarized
quarks and nucleons

vector charge:

� � � � ���
	 � � � � � ��

� �� �
� ��� � � � � �� � � � �

q(x): spin averaged
well known

H1, ZEUS

Longitudinally polarized
quarks and nucleons

axial charge:

� � � � ���
	 � 	 � � � � � ��

� � � �
� �� � � � � � � �� � � � �

�

q(x): helicity difference
known

SMC, HERMES,
COMPASS, RHIC

Transversely polarized
quarks and nucleons

tensor charge :

� � � � ����� �� 	 � � � � � ��

� � � �
� �� � � � � � � �� � � � �

�

q(x): helicity flip
unmeasured

SMC, HERMES,
COMPASS, RHIC
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Characteristics of Transversity

� Non-relativistic quarks:

� � � � � � � � � � �

� � � probes relativistic nature of quarks

� Angular momentum conservation� Transversity has no gluon component� different

� �

evolution than

� � � � �

� � and �� contribute with opposite sign to

� � � � �

� predominantly sensitive to valence quark polarization

� Bounds:� � � � � � � ��� � � � �

� Soffer bound:

� � � � � � ��� �� �� � � � � � � � � ��

Transversity distribution CHIRAL ODD
No Access in Inclusive DIS !!!

L

R

R

L

NEED another chiral-odd object!

semi-inclusive DIS Collins FF

RL
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How can one measure Transversity

Single spin azimuthal asymmetries with a transverse polarized target� � � � ���

x

y

z

φS

φ

~phad

~S⊥

~k

~k′

~q

uli

� � � � �	� Collins angle
� 
� � 
 � � � � � � �� � 
 � � 
 � � � � � 

� �

chiral-odd chiral-odd
DF FF

� ��� ��� � � ���� � � � � �! � "� � � � � � �

�� �# � �# " �

� � � ��� � � $ �� %'& (*) + �-, �. (*/ +

� $ �� & () + � .(*/ +

Can only measure

�10 �32 �54 6 �87 9;: �3< �6 �87 9;: � < �

from e

=

e > collider experiments, like Belle
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First glimpse on Transversity?!
HERMES:

� until 2001 no data with transverse polarized proton target available� � like for exclusive pion production� � use longitudinal polarized proton and deuterium target

��� � � � � � �
�� � 4 � 	 � � �  � � � � �

� 	 � � � � � � � � �

��
 transverse component
of target spin w.r.t. virtual photon:� �  � ��� ��� � � �2� �  �� ��� ��

� � ��� � !� �  �#" " 4 �
� $ %'& � � � � �  � � $ % & � � � � (

x

y

z φ

~phad

~S⊥

~S

~k

~k′

~q

uli

� � transverse component to 	 )

� � ��� � !� � � �#" " �
� 97 * 9 + , 9 2 - .0/ � � �123 4 6 � 9 : �3< �  � � 97 * 9 + , 9 2 - . � � � � � � �� �65 �1 23 4

sub-leading transversity4 Collins FF
order
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Results
PROTON DEUTERON
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Original predictions by Collins:

� Proton Target
Larger for � = , � �

than for � >

( �-quark dominance )

� Rise with x ��

(valence quark dominance)
� Grow with � � , peak around 1 GeV

(

� 	�
� 
  �� �� �� = � � 	 with

��� �1 GeV)

� First SSA for Kaons
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What does theory tell?
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� - �calculated in: �QSM, QdQ, pQCD models

� sub-leading order terms� 0

� Collins FF
� � �:

�QSM:
� � 6 � :��� :� � � � � � � � � � � �

QdQ, pQCD: ’Collins guess’
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Challenges in Interpretation

Problem:

�have neglected the Sivers - DF� � ��� � !� � � � �
� 7 *�

+ ,� 2 � � 9 :( �32 �54 � :�3< �

longitudinally polarized target

Sivers and Collins effect indistinguishable

Transversely polarized target needed

becomes dominant

Sivers and Collins distinguishable

moment moment
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Results from SMC
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Summary� Orbital Angular Momentum

��
�

GPDs: new avenue to study the structure of the nucleon

exclusive reactions are experimentaly established
many different processes can and have been studied

BUT: not yet enough data to

deduce kinematic dependences of GPDs
determine GPDs as accurate as standard PDFs

The transverse spin structure of the nucleon

nothing definite known till now

data from longitudinally polarized targets suggest

BUT: Collins versus Sievers

need data with transversely polarised targets
COMPASS, HERMES, RHIC
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