The Transverse Spin Effects in Kaon Production at HERMES Ulrike Elschenbroich

QCD-N'06, Frascati, Italy

14.06.2006

Outline

Appetiser

The RICH Detector

The Measured Azimuthal Asymmetry Moments for Kaons

Conclusions

Appetiser

Fit to the Sivers moments of charged pions by Anselmino et al.

U. Elschenbroich, The Transverse Spin Effects in Kaon Production at HERMES, QCD-N'06 - p.3

Appetiser

→ predictions for the kaon Sivers moments neglecting sea quarks

U. Elschenbroich, The Transverse Spin Effects in Kaon Production at HERMES, QCD-N'06 - p.3

u-quark Dominance

$$\sigma^{ep \rightarrow eh} \sim \sum_{q} e_{q}^{2} \cdot \mathsf{DF}^{q} \otimes \mathsf{FF}^{q \rightarrow h}$$

Distribution Functions and Fragmentation Functions

quark charge is additional factor

 \rightarrow unpol. scattering off a proton is dominated by scattering off a u quark

The HERMES Spectrometer

Hadron identification with the **RICH** detector

Dual radiator Ring Imaging Čerenkov detector

Dual radiator Ring Imaging Čerenkov detector

Aerogel : n = 1.03

Dual radiator Ring Imaging Čerenkov detector

Aerogel : n = 1.03C₄F₁₀ : n = 1.0014

Dual radiator Ring Imaging Čerenkov detector

Aerogel : n = 1.03C₄F₁₀ : n = 1.0014

PMT matrix with 1934 PMTs

Dual radiator Ring Imaging Čerenkov detector

Aerogel : n = 1.03 $C_4 F_{10}$: n = 1.0014

Hadron Identification

real π **K** event

Hadron Identification

Hadron Identification

Measurement of cross section asymmetries depending on the azimuthal angles ϕ and ϕ_S :

$$A_{\rm UT}(\phi,\phi_S) = \frac{1}{S_{\perp}} \frac{N^{\uparrow}(\phi,\phi_S) - N^{\downarrow}(\phi,\phi_S)}{N^{\uparrow}(\phi,\phi_S) + N^{\downarrow}(\phi,\phi_S)}$$

Measurement of cross section asymmetries depending on the azimuthal angles ϕ and ϕ_S :

$$A_{\mathrm{UT}}(\phi,\phi_S) = \frac{1}{S_{\perp}} \frac{N^{\uparrow}(\phi,\phi_S) - N^{\downarrow}(\phi,\phi_S)}{N^{\uparrow}(\phi,\phi_S) + N^{\downarrow}(\phi,\phi_S)}$$

$$\sim \dots \sin(\phi + \phi_S) \frac{\sum_q e_q^2 \mathcal{I} \left[\dots \delta q(x,\vec{p}_T^2) \cdot H_1^{\perp q}(z,\vec{k}_T^2) \right]}{\sum_q e_q^2 q(x) \cdot D_1^q(z)}$$

$$+ \dots \sin(\phi - \phi_S) \frac{\sum_q e_q^2 \mathcal{I} \left[\dots f_{1T}^{\perp q}(x,\vec{p}_T^2) \cdot D_1^q(z,\vec{k}_T^2) \right]}{\sum_q e_q^2 q(x) \cdot D_1^q(z)}$$

... distribution and fragmentation functions?

Assume a Gaussian distribution for \vec{p}_T and \vec{k}_T dependence:

$$A_{\mathrm{UT}}(\phi, \phi_S) \sim \ldots \sin(\phi + \phi_S) \sum_q e_q^2 \cdot \delta q(x) \cdot H_1^{\perp(1/2) q}(z)$$

+ $\ldots \sin(\phi - \phi_S) \sum_q e_q^2 \cdot f_{1T}^{\perp(1/2) q}(x) \cdot D_1^q(z)$
+ \ldots

(1/2): $|\vec{p_T}|$, $|\vec{k_T}|$ moment of distribution / fragmentation function

... distribution and fragmentation functions?

Assume a Gaussian distribution for $\vec{p_T}$ and $\vec{k_T}$ dependence:

$$A_{\mathrm{UT}}(\phi, \phi_S) \sim \dots \sin(\phi + \phi_S) \sum_{q} e_q^2 \cdot \delta q(x) \cdot H_1^{\perp(1/2) q}(z) + \dots \sin(\phi - \phi_S) \sum_{q} e_q^2 \cdot f_{1T}^{\perp(1/2) q}(x) \cdot D_1^q(z) + \dots \frac{\text{asymmetry amplitudes}}{A_{\mathrm{UT}}^{\sin(\phi + \phi_S)}} \text{ and } A_{\mathrm{UT}}^{\sin(\phi - \phi_S)}$$

pions with large statistics:

bin $A_{UT}(\phi, \phi_S)$ in 12×12 $\phi \times \phi_S$ bins, perform least–squares fit

- pions with large statistics:
 bin $A_{UT}(\phi, \phi_S)$ in 12×12 $\phi \times \phi_S$ bins, perform least-squares fit
- kaons with low statistics: perform maximum—likelihood fit -> no azimuthal binning
 - probability density function:

$$F_{\uparrow(\downarrow)} \left(A_{\mathrm{UT}}^{\sin(\phi \pm \phi_S)}, \dots, \phi, \phi_S \right) = \\ \epsilon \cdot \sigma_{\mathrm{UU}} \cdot \frac{1}{2} \left(1 + (-) A_{\mathrm{UT}}^{\sin(\phi \pm \phi_S)} \sin(\phi \pm \phi_S) + (-) \dots \right)$$

acceptance ϵ and cross section σ_{UU} independent of $A_{\mathrm{UT}}^{\sin(\phi\pm\phi_S)},\ldots$

- pions with large statistics:
 bin $A_{UT}(\phi, \phi_S)$ in 12×12 $\phi \times \phi_S$ bins, perform least-squares fit
- kaons with low statistics: perform maximum–likelihood fit → no azimuthal binning
 - probability density function:

$$egin{aligned} F_{\uparrow(\downarrow)} & (A_{ ext{UT}}^{\sin(\phi\pm\phi_S)},\ldots,\phi,\phi_S) = \ & rac{1}{2} \left(1{+}(-)A_{ ext{UT}}^{\sin(\phi\pm\phi_S)}\sin(\phi\pm\phi_S){+}(-)\ldots
ight) \end{aligned}$$

acceptance ϵ and cross section σ_{UU} independent of $A_{\mathrm{UT}}^{\sin(\phi\pm\phi_S)},\ldots$

• maximise $\log \mathcal{L}$, i.e., logarithm of the likelihood function:

$$\mathcal{L}(A_{\mathrm{UT}}^{\sin(\phi\pm\phi_S)},\ldots)=rac{1}{\mathcal{N}}\prod_{i=1}^{N_\uparrow}F_{\uparrow i}\prod_{i=1}^{N_\downarrow}F_{\downarrow i}$$

$P_{h\perp}$ -distributions

U. Elschenbroich, The Transverse Spin Effects in Kaon Production at HERMES, QCD-N'06 - p.11

Kaon Collins Amplitudes

 $A_{\mathrm{UT}}^{\sin(\phi+\phi_S)}\sim \delta q\cdot H_1^{\perp(1/2)}$

- no significant non-zero kaon amplitudes
- systematic uncertainty:
 PID, acceptance, smearing, unpolarised cosine moments
- overall scale uncertainty 6.6 %

Kaon Collins Amplitudes

 $A_{\mathrm{UT}}^{\sin(\phi+\phi_S)}\sim \delta q\cdot H_1^{\perp(1/2)}$

- K^+ amplitudes consistent to π^+ amplitudes
- **)** u–quark dominance
- → Collins FF seems to be similar for pions and kaons?

Kaon Sivers Amplitudes

 $A_{
m UT}^{\sin(\phi-\phi_S)} \sim f_{1T}^{\perp(1/2)} \cdot D_1$

- positive K^+ amplitude
- *K⁻* amplitude consistent with zero
- systematic uncertainty:
 PID, acceptance, smearing, unpolarised cosine moments
- overall scale uncertainty 6.6 %

Kaon Sivers Amplitudes

$$A_{\mathrm{UT}}^{\sin(\phi-\phi_S)}\sim f_{1T}^{\perp(1/2)}\cdot D_1$$

- **)** u–quark dominance
- → sea quark contribution to Sivers moment important?

Kaon Sivers Amplitudes

$$A_{\mathrm{UT}}^{\sin(\phi-\phi_S)}\sim f_{1T}^{\perp(1/2)}\cdot D_1$$

- fit to pion amplitudes by Anslemino et al.
- → prediction for K^+ amplitudes slightly too small
- → sea quark contribution to Sivers moment important?

Conclusions

- First measurement of Collins and Sivers moments for kaons in semi-inclusive DIS.
- Sea-quark contribution to the Sivers moments might be not negligible.
- Data taken in 2005 will double the statistics.
- We are working on the extraction of the Sivers function.
- Belle results will allow transversity extraction.
- \bigcirc The determination of $P_{h\perp}$ –weighted asymmetry amplitudes is under study.

The Transverse Spin Effects in Kaon Production at HERMES Ulrike Elschenbroich

QCD-N'06, Frascati, Italy

14.06.2006

likelihood function:

$$\mathcal{L}(A_{\mathrm{UT}}^{\sin(\phi\pm\phi_S)},\ldots)=rac{1}{\mathcal{N}}{\displaystyle\prod_{i=1}^{N_{\uparrow}}F_{\uparrow\,i}}{\displaystyle\prod_{i=1}^{N_{\downarrow}}F_{\downarrow\,i}}$$

with normalisation:

$$\mathcal{N} = \mathcal{N}_{\uparrow}^{N_{\uparrow}} \cdot \mathcal{N}_{\downarrow}^{N_{\downarrow}}$$
$$\mathcal{N}_{\uparrow(\downarrow)} = \sum_{i=1}^{N} N_{\uparrow} + N_{\downarrow} \left(1 + (-) A_{\mathrm{UT}}^{\sin(\phi \pm \phi_{S})} \sin(\phi_{i} \pm \phi_{Si}) + (-) \dots \right)$$

Vector Meson Contribution

