Pion unpolarized azimuthal modulations at HERMES

Firenze, DIS 2010

Francesca Giordano Rebecca Lamb

For the hermes collaboration

Unpolarized Semi-Inclusive DIS

Z Fractional energy transfer to the

produced hadron

Collinear approximation

$$\frac{d^3\sigma}{dx \ dy \ dz} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x} \right) \left\{ A(y) \ F_{UU,T} + B(y) \ F_{UU,L} \right\}$$
$$F_{...} = F_{...}(x, y, z)$$

Unpolarized Semi-Inclusive DIS

Unpolarized Semi-Inclusive DIS

$$\frac{d^{5}\sigma}{dx \ dy \ dz \ d\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{A(y) \ F_{UU,T} + B(y) \ F_{UU,L} + C(y) \ \cos\phi_{h} \ F_{UU}^{\cos\phi_{h}} + B(y) \ \cos2\phi_{h} \ F_{UU}^{\cos2\phi_{h}} \right\}$$

$$F_{...} = F_{...}(x, y, z, P_{h\perp})$$

Unpolarized Semi-Inclusive DIS

$$\frac{d^{5}\sigma}{dx \, dy \, dz \, d\phi_{h} dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left(1 + \frac{\gamma^{2}}{2x}\right) \left[A(y) F_{UU,T} + B(y) F_{UU,L}\right] \\ \left[+C(y) \cos\phi_{h} F_{UU}^{\cos\phi_{h}} + B(y) \cos 2\phi_{h} F_{UU}^{\cos 2\phi_{h}}\right]$$

$$\left\langle \cos n\phi_{h}\right\rangle(x, y, z, P_{h\perp}) = \frac{\int \cos n\phi_{h}\sigma^{(5)}d\phi_{h}}{\int \sigma^{(5)}d\phi_{h}}$$

FF $F_{UU,T} \propto C[f_1 D_1]$ ĎF

Distribution Functions (DF)						
N / q	U	L	Т			
U	f_1		h_1^\perp			
L		g_1	h_{1L}^{\perp}			
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^\perp			

Fragmentation Functions (FF)			
q/h	U		
U	D_1		
Т	H_1^\perp		

Distribution Functions (DF)						
N / q	U	L	Т			
U	f_1		h_1^\perp			
L		g_1	h_{1L}^{\perp}			
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^\perp			

Fragmentation Functions (FF)			
q/h	U		
U	D_1		
Т	H_1^\perp		

Distribution Functions (DF)						
N / q	U	L	Т			
U	f_1		h_1^\perp			
L		g_1	h_{1L}^{\perp}			
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^\perp			

Fragmentation Functions (FF)				
q/h	U			
U	D_1			
Т	H_1^\perp			

h_1^{\perp} = Boer-Mulders function CHIRAL-ODD

Unpolarized Semi-Inclusive DIS

(Implicit sum over quark flavours)

Unpolarized Semi-Inclusive DIS

HERA storage ring @ DESY

HERMES spectrometer

Resolution: $\Delta p/p \sim 1-2\% \Delta \theta < 0.6$ mrad Electron-hadron separation efficiency $\sim 98-99\%$ Hadron identification with dual-radiator RICH

Experimental extraction

$$A = 2\langle \cos \phi_h \rangle$$

$$B = 2\langle \cos 2\phi_h \rangle$$

$$n^{EXP} = \int \sigma_0(w) \left[1 + A(w) \cos \phi_h + B(w) \cos 2\phi_h \right] L dw$$

$$w = (x, y, z, P_{h\perp})$$

Experimental extraction
$$A = 2\langle \cos \phi_h \rangle$$

 $B = 2\langle \cos 2\phi_h \rangle$ $n^{EXP} = \int \sigma_0(w) \left[1 + A(w) \cos \phi_h + B(w) \cos 2\phi_h \right] \mathcal{E}_{acc}(w, \phi_h) \mathcal{E}_{RAD}(w, \phi_h) L dw$
 $w = (x, y, z, P_{h\perp})$

Experimental extraction

$$A = 2 \langle \cos \phi_h \rangle$$
$$B = 2 \langle \cos 2\phi_h \rangle$$

 $n^{EXP} = \int \sigma_0(w) \left[1 + \frac{A(w)\cos\phi_h + B(w)\cos2\phi_h}{2} \right] \mathcal{E}_{acc}(w,\phi_h) \mathcal{E}_{RAD}(w,\phi_h) L dw$

The multi-dimensional analysis

The multi-dimensional analysis

Kinematic integration range

BINNING 900 kinematical bins x 12 φ _η -bins								
Variable	riable Bin limits						#	
Х	0.023	0.042	0.078	0.145	0.27	0.6		5
У	0.2	0.3	0.45	0.6	0.7	0.85		5
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6
Pt	0.05	0.2	0.35	0.5	0.7	1	1.3	6

Kinematic integration range

BINNING 900 kinematical bins x 12 φ _η -bins								
Variable	Variable Bin limits							#
х	0.023	0.042	0.078	0.145	0.27	0.6		5
У	0.2	0.3	0.45	0.6	0.7	0.85		5
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6
Pt	0.05	0.2	0.35	0.5	0.7	1	1.3	6

Hydrogen data

Hydrogen data

Hydrogen data

π^+ - π^- moment difference

Hydrogen vs. Deuterium data

31

 π^+

Hydrogen vs. Deuterium data

 π^{-}

Summary

- The existence of an intrinsic **quark transverse motion** gives origin to an azimuthal asymmetry in the hadron production direction:
 - Boer-Mulders effect: a leading twist asymmetry originated from the correlation between the quark transverse motion and transverse spin (*spin-orbit effect*);
 - Cahn effect: an (higher twist) azimuthal modulation related to the existence of intrinsic quark motion.

4 For the first time cosine modulations have been measured for <u>charged pions</u>:

- ▲ Negative $\langle \cos \phi_h \rangle$ moments are extracted for positive and negative pions; ▲ The results for the $\langle \cos 2\phi_h \rangle$ moments are positive for the negative pions and slightly negative for positive pions
- 4 Differences in the charged pion results can be interpreted as an

evidence of a non-zero Boer-Mulders function

Average kinematics

34

Hydrogen data: cosine moments for hadrons

Hydrogen vs. Deuterium data

Hydrogen vs. Deuterium data

More recent results in SIDIS

