

Exploring Structures in Non-perturbative QCD at (Relatively) Hard Scales

ICHEP 2002, Amsterdam, The Netherlands, July 24 - 31, 2002 University of Illinois at Urbana-Champaigr Naomi C.R. Makins

1 Proton Structure

spin-dependent parton distribution functions of the proton

2 Diffraction

"soft" processes at the highest energies

3 Generalized Parton Distributions

mapping out the proton wavefunction

4 Hadron Formation

spin and scale dependence of the fragmentation process

COMPASS 100 – 2 STAR, PHENIX 250 Ge	future experiments	CLAS 4-6G	HERMES 27.6 Ge	H1,ZEUS 27.6 Ge	current experiments	beam		 hadron formation 	\Rightarrow parton distribution fur	• proton target	study partonic substructu	Q^2 = -mass ² of virtual photo W^2 = mass ² of $\gamma^* p$ system	Deep-Inelastic Sc
00 GeV μ , polarized V p , polarized		eV e^- , polarized	e^{\pm} , polarized	$V e^{\pm}$				ins $D(z,Q^2)$	nctions $q(x, Q^2)$ —	Ζ	ure of	on > 1 GeV ² $e^{(E)}$	cattering
fixed p,d , polarized 250 GeV p , polarized		fixed p,d , polarized	fixed p,d , polarized	900 GeV p		target					u		(E', p')
10 GeV 2 M_W^2		1.3 GeV^2	2.5 GeV^2	\gg 10 GeV 2		$\langle Q^2 \rangle$	A	+	π	h	h		

Constituent Quark Model Pure valence description: protor

Pure valence description: proton = 2u + d

- Perturbative Sea Sea quark pairs from
- $g \rightarrow q\overline{q}$ should be flavor symmetric:

Non-perturbative models : alternate deg's of freedom

 $\overline{u} = d$

Meson Cloud Models π^+ meson u du d

Chiral-Quark Soliton Model

- quark degrees of freedom in a pion mean-field
- nucleon = chiral soliton
- one parameter: dynamically-generated
- expand in $1/N_c$:

Spin Structure of the Proton

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

"You think you understand something? Now add spin ..." – R. Jaffe

Parton Distribution Functions

unpolarized: $q(x) = q^{\uparrow}(x) + q^{\downarrow}(x)$ polarized: $\Delta q(x) = q^{\uparrow}(x) - q^{\downarrow}(x)$

Constituent Quark Model

$$\Delta u = +4/3, \ \Delta d = -1/3 \rightarrow \Delta \Sigma = 1$$

Relativistic Quark Model

orbital angular momentum is important

$$\Delta \Sigma \simeq 0.60 - 0.75$$
 $L_q = rac{1}{2}(1$

 $\Delta \Sigma$)

Polarized Deep-Inelastic Scattering

From NLO-QCD analysis of inclusive DIS measurements ... SMC, PRD 58 (1998) 112002

- $\Delta\Sigma=0.38$
- (in AB scheme)
- $\Delta G = 1.0^{+1.9}_{-0.6}$ (in AB scheme) \rightarrow barely constrained, positive value favored
- $\Delta s = -0.02$ to -0.15 (model dependent) \rightarrow slight negative sea-quark polarization?

Meson Cloud Models

Li, Cheng, hep-ph/9709293

$$ightarrow \Delta q_{sea} < 0$$
, but ..

$$\Rightarrow \quad \Delta \overline{q} = 0$$

"Higher-order" cloud of vector mesons can generate a small polarization.

Chiral-Quark Soliton Model Instanton Mechanism

Goeke et al, hep-ph/0003324

'tHooft instanton vertex $\sim \overline{u}_R u_L \overline{d}_R d_L$ transfers helicity from valence uquarks to $d\overline{d}$ pairs

No such calculation yet performed ...

Technique: Flavour Tagging

quark through the agency of the fragmentation functions $D_q^h(z,Q^2)$. In LO QCD: The flavour content of the final state hadrons is related to the flavour of the struck

$$\frac{d\sigma_h^{\uparrow\downarrow}}{dz} - \frac{d\sigma_h^{\uparrow\uparrow}}{dz} = \sum_q e_q^2 \ \Delta q(x, Q^2) \cdot D_q^h(z, Q^2)$$

- positive Δs favored
- $\Delta \overline{u} \Delta \overline{d}$ consistent with 0

Latest Δq Results from HERMES

Fundamental Matrix Elements

axial charge $\langle PS|\overline{\psi}\gamma^{\mu}\gamma_{5}\psi|PS\rangle = \int_{0}^{1} dx \ \Delta q(x) + \Delta \overline{q}(x) \rightarrow \text{quark polarization}$ vector charge $\langle PS|\overline{\psi}\gamma^{\mu}\psi|PS\rangle = \int_0^1 dx \ q(x) - \overline{q}(x)$ tensor charge $\langle PS | \overline{\psi} \sigma^{\mu\nu} \psi | PS \rangle = \int_0^1 dx \, \delta q(x) - \delta \overline{q}(x) \rightarrow ???$ \rightarrow # valence quarks

Forward Helicity Amplitudes

(optical theorem applied to DIS)

Properties of Transversity

- In Non-Relativistic Case, boosts and rotations commute:
- $\delta q(x) \approx \Delta q(x)$

No Gluons

Angular momentum conservation: $\Lambda - \lambda = \Lambda' - \lambda'$ \Rightarrow different Q^2 evolution than $\Delta q(x)$ ⇒ transversity has no gluon component

Chiral Odd

via a chiral-odd fragmentation function ⇒ only measurable in semi-inclusive DIS,

 π production at HERMES First glimpse from spin-azimuthal asymmetry for

Future: DIS with transverse target polarization at HERMES Run 2, COMPASS, RHIC-spin

N.C.R. Makins, ICHEP 2002, Amsterdam

С

θ

Proton Spin Structure: Status

• quark polarization $\Delta q(x)$:

→ first 5-flavor separation from HERMES → $\Delta \overline{q}(x)$ consistent with zero, in contrast to χ QSM model predictions

• transversity $\delta q(x)$:

- \rightarrow a new window on quark spin
- \rightarrow azimuthal asymmetries from HERMES successfully modelled in terms of $\delta q(x)$

• gluon polarization $\Delta G(x)$:

- ightarrow some indications that $\Delta G>0$...
- \rightarrow RHIC-spin and COMPASS will provide some answers!
- orbital angular momentum L:
- ightarrow how to measure? ightarrow GPD's ...

Diffractive Vector Meson Production

Even at highest energies W = 10 - 300 GeV, diffractive processes are alive and well

e.g. Diffractive Vector Meson producⁿ

3 scales

t = momentum transfer to target

$$ightarrow \sigma \sim e^{-bt}$$
 @ low t

- $\rightarrow b$ reflects <u>size</u> of scattered p'cles
- $Q^2 = photon virtuality$
- $m_{\rm VM}$ = mass of vector meson

theorems allows pQCD analysis of exclusive processes at high scales A new class of factorization

pQCD picture: 2-gluon exchange

 $g(x) \sim x^{-(1+\lambda)}$ with $\lambda \approx 0.2$

 $\Rightarrow \sigma_L \sim W^{0.8}$

Soft → Hard Transitions

Photoproduction ($Q^2 = 0$)

onset of hard behavior: <u>charm mass</u> (J/ψ)

Diffractive ρ production

Measurements well described by pQCD model of 2-gluon exchange

0.2

C

ھ

Angular distribution of $ho o \pi\pi$ decay gives info about transition amplitudes $T_{\lambda_{
ho}\lambda_{\gamma}}$

Spin-Density Matrix Elements at High t

at low t: s-channel helicity conservation (SCHC) \longrightarrow only T_{00} and T_{11} non-zero

r₁₁

r₀₀5+

0.4

2

Gluon Density from $\gamma p \rightarrow J/\psi p$

Diffractive ${
m J}/\psi$ production well described by pQCD 2-gluon exchange models

Should be possible to extract g(x)!

- $W = 250 \text{ GeV} \rightarrow x = 10^{-4}$
- data precise enough to distinguish between different PDF sets
- ... but theoretical uncertainties make extraction impossible at present: higher-twist correc's and skewing ...

DVCS: Beam-Spin Azimuthal Asymmetry

DVCS Cross-Section from H1 and ZEUS

DVCS Cross-Section from H1 and ZEUS

- explore correlation parameter a: $\sim x$ -range over which quarks are correlated
- Calculations by Freund & McDermott, based on LO (solid) and NLO (dashed) PDF's

DVCS: Comparison with GPD Calculations

Hadronization: The Long-Range Dynamics of Confinement

What do we know?

The Lund String Model

Phenomenlogical description in terms of colour-string breaking and parton clustering.

.

Evolution of the fragmentation functions

A **Tool** for hadron structure studies (e.g. flavour-tagging)

$$D_1 = D_u^{\pi^+} = D_d^{\pi^-} = \dots$$

 $D_2 = D_d^{\pi^+} = D_u^{\pi^-} = \dots$

What are we not so sure about?

Spin transfer:

Is the spin of the struck quark communicated to the hadronic final state?

Single-spin asymmetries

How important is intrinsic transverse momentum?

- \Rightarrow phase coherence?
- \Rightarrow access to new structure functions

Space-time structure:

How long does it take to form a hadron?

The Space-Time Structure of Fragmentation

radius as a yardstick against which to measure the time scale of hadron formation . By embedding the fragmentation process within a nucleus, one can use the nuclear

Single Time Scale Model

constant (τ_h), apply Lorentz boost Postulate: hadron formation time is a

$$f = \tau_h \frac{E_h}{m_h} = \tau_h \frac{z\nu}{m_h}$$

$$f = \tau_h \frac{E_h}{m_h} = \tau_h \frac{z\nu}{m_h}$$

$$F_f = au_h \frac{E_h}{m_h} = au_h \frac{z
u}{m_h}$$

$$m_h m_h$$

 $ightarrow au_f$ depends on u, and z, m_h

$$T_f = au_h \frac{E_h}{m_h} = au_h \frac{z
u}{m_h}$$

$$\tau_f = \tau_h \frac{1}{m_h} = \tau_h \frac{1}{m_h}$$

$$T_f = au_h rac{
u_h}{m_h} = au_h rac{
u_
u}{m_h}$$

Once hadron is formed, will be suppressed by

 $R^n_A(z,
u) = \langle$ $\left(\frac{1}{N_e}\frac{d^2N_h}{dz\,d\nu}\right)_A / \left(\frac{1}{N_e}\frac{d^2N_h}{dz\,d\nu}\right)_D$

 \Rightarrow study hadron multiplicity ratio

final state interactions with nuclear medium

Hadron Attenuation at HERMES

ν dependence shows the expected Lorentz behavior ...

Gluon Bremsstrahlung Model

At high z:

- ightarrow few gluons radiated
- <u>**short</u>** formation time $\tau_f = \nu(1-z)c_h$ </u>
- ightarrow larger attenuation by nuclear rescattering
- N.C.R. Makins, ICHEP 2002, Amsterdam

Hadron Formation Time

RHIC is 40 imes that inside cold nuclear matter Suggests that gluon density in Au + Au at

 $\overline{\mathbf{O}}$

 \circ

 \mathbf{N}

 \mathbf{U}

6

 $p_T (GeV/c)$

 \Downarrow $dE/dx \approx 12$ GeV/fm but after correction for expanding system:

collisions at PHENIX: $dE/dx \approx 0.25$ GeV/fm and from π^0 yield in Au + Au

$$ar{D}_f^h(z) pprox rac{1}{1 - \Delta E/E} \ D\left(rac{z}{1 - \Delta E/E}
ight)$$

$$\overline{D}_{f}^{h}(z) pprox rac{1}{1 - \Delta E/E} \ D\left(rac{z}{1 - \Delta E/E}
ight)$$

X.N. Wang, hep-ph/0111404

calculated from HERMES π^{\pm} data:

Conclusions and Outlook

Recent theoretical and experimental progress has given us the explore non-perturbative QCD phenomena at a new level of detail too/s ð

Deep Inelastic Scattering

explore spin-dependence of distribution and fragmentation functions

Hard Exclusive Processes

ightarrow scattering subprocess at hard scales understood in terms of pQCD ...

 \rightarrow explore <u>GPD's</u> = map of the proton wavefunction

Can we achieve the same level of understanding here as with F_2 ?

The Next Round of Experiments

- New Experiments: COMPASS and RHIC-spin commissioned in 2001
- \Rightarrow precise data on quark and gluon polarization soon forthcoming!
- HERMES Run 2 with transverse target : focus on transversity
- H1 and ZEUS with <u>spin rotators</u> :

polarized beam ightarrow DVCS interference effects at the highest scales