LightCone 2010 - Valencia, Spain June 14th - 18th, 2010

The HERMES view on the nucleon's TMD partonic structure

- a small selection from many results -

Gunar.Schnell @ desy.de [on behalf of the HERMES collaboration]

Photo: Emilio García

The HERMES Experiment (†2007)

27.6 GeV polarized e⁺/e⁻ beam scattered off ...

unpolarized (H, D, He,..., Xe) as well as **transversely (H)** and longitudinally (H, D) polarized (pure) gas targets

Last* time at LightCone ...

* HERMES' previous appearance: August 6th, 2002

Outlook

New Target Magnet for HERMES

- Transverse target (B = 0.295T)
- High uniformity along beam direction: $\Delta B \leq 4.5 \cdot 10^{-5} T$
- Transversely polarized hydrogen
 - Target polarization above 80%
- $\langle \sin \phi \rangle_{UT}$ becomes dominant
- Sivers and Collins distinguishable
 - $\hookrightarrow h_1$ and H_1^{\perp} as well as f_{1T}^{\perp} accessible

Outlook

- $\langle \sin \phi \rangle_{UT}$ becomes dominant
- Sivers and Collins distinguishable
 - $\hookrightarrow h_1$ and H_1^{\perp} as well as f_{1T}^{\perp} accessible

Outlook

... and now the conclusion

Spin-Momentum Structure of the Nucleon

$$\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} + \lambda \gamma^{+} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right]$$

$$\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

quark pol.
$$+ s^{i} (2k^{i}k^{j} - k^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$$

No.	U	L	Т
U	f_1	6	h_1^\perp
\mathbf{L}		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Twist-2 TMDs

- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

nucleon po

Spin-Momentum Structure of the Nucleon

$$\frac{1}{2} \operatorname{Tr} \left[(\gamma^{+} + \lambda \gamma^{+} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right]$$
$$\frac{1}{2} \operatorname{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left[f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right]$$

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$

$$+S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} - \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{LT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) \right\}$$
Beam Target Polarization
$$+\lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$
Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093

"Trento Conventions", Phys. Rev. D 70 (2004) 117504

8

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$
$$+ S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$
$$+ S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right.$$
$$+ \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right)$$
Beam Target Polarization
$$+ \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$
Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., JHEP 0702 (2007) 093 (Trento Conventions'', Phys. Rev. D 70 (2004) 117504

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$
$$+ S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$
$$+ S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \left\{ \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \left\{ \frac{Collins \, Effect:}{sensitive \, to \, quark \, transverse \, spin} \right\}$$

G. Schnell - DESY Zeuthen

LC 2010, June 17th, 2010

8

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right\}$$

 Sivers Effect:
 correlates hadron's transverse momentum with nucleon spin

requires orbital angular momentum

 $l\sigma_{UT}^{12}$

 $(\phi - \phi_S) d\sigma_L^1$

Phys. B 461 (1996) 197 7 (1998) 5780 5 (2004) 309

) 093

mento conventions , Phys. nev. D 70 (2004) 117504

9

LC 2010, June 17th, 2010

2 ⟨sin(φ-φ_S)⟩_{UT}

 $2 \left< \sin(\phi - \phi_S) \right>_{UT}$

 $\langle \sin(\phi - \phi_S) \rangle_{UT}$

 $\langle \sin(\phi - \phi_S) \rangle_{UT}$

 $2 \left< \sin(\phi - \phi_S) \right>_{UT}$

LC 2010, June 17th, 2010

Sivers "difference asymmetry"

Transverse single-spin asymmetry of pion cross-section difference:

$$A_{UT}^{\pi^{+}-\pi^{-}}(\phi,\phi_{S}) \equiv \frac{1}{S_{T}} \frac{(\sigma_{U\uparrow}^{\pi^{+}}-\sigma_{U\uparrow}^{\pi^{-}}) - (\sigma_{U\downarrow}^{\pi^{+}}-\sigma_{U\downarrow}^{\pi^{-}})}{(\sigma_{U\uparrow}^{\pi^{+}}-\sigma_{U\uparrow}^{\pi^{-}}) + (\sigma_{U\downarrow}^{\pi^{+}}-\sigma_{U\downarrow}^{\pi^{-}})}$$
$$\langle \sin(\phi-\phi_{S}) \rangle_{UT}^{\pi^{+}-\pi^{-}}(\phi,\phi_{S}) \propto -\frac{4f_{1T}^{\perp,u_{v}}-f_{1T}^{\perp,d_{v}}}{4f_{1}^{u_{v}}-f_{1}^{d_{v}}}$$

Sivers "difference asymmetry"

Transverse single-spin asymmetry of pion cross-section difference:

$$A_{UT}^{\pi^{+}-\pi^{-}}(\phi,\phi_{S}) \equiv \frac{1}{S_{T}} \frac{(\sigma_{U\uparrow}^{\pi^{+}}-\sigma_{U\uparrow}^{\pi^{-}}) - (\sigma_{U\downarrow}^{\pi^{+}}-\sigma_{U\downarrow}^{\pi^{-}})}{(\sigma_{U\uparrow}^{\pi^{+}}-\sigma_{U\uparrow}^{\pi^{-}}) + (\sigma_{U\downarrow}^{\pi^{+}}-\sigma_{U\downarrow}^{\pi^{-}})}$$

$$\langle \sin(\phi-\phi_{S}) \rangle_{UT}^{\pi^{+}-\pi^{-}}(\phi,\phi_{S}) \propto \left(\frac{4f_{1T}^{\perp,u_{v}}-f_{1T}^{\perp,d_{v}}}{4f_{1}^{u_{v}}-f_{1}^{d_{v}}}\right)$$

The kaon Sivers amplitudes

The kaon Sivers amplitudes

The kaon Sivers amplitudes

. .

The "Kaon Challenge" $+ \sum_{i=1}^{+} ({}^{\circ} \phi_{-} \phi) uis > 2 + \sum_{i=1}^{+} ({}^{\circ} \phi) uis > 2 + \sum_{i=1}^{+}$ $\pi^{+}/K^{+} \text{ production dominated}^{10} \overset{\mathsf{10}}{\underset{\mathrm{tr}}{}^{\mathsf{L},\mathbf{u}}(\mathbf{x},\mathbf{p}_{\mathbf{T}}^{2}) \otimes_{\mathcal{W}} \mathbf{D}_{1}^{\mathbf{u} \to \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{\mathbf{T}}^{2}) }{ \mathbf{f}_{1}^{\mathsf{u}}(\mathbf{x},\mathbf{p}_{\mathbf{T}}^{2}) \otimes \mathbf{D}_{1}^{\mathbf{u} \to \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{\mathbf{T}}^{2}) }$ $\Box K^+ = |u\bar{s}\rangle \& \pi^+ = |u\bar{d}\rangle \Rightarrow$ non-trivial role of sea quarks?

The "Kaon Challenge" $+ \sum_{x} ({}^{\circ} - \phi) u(s) > 2 - \sum_{x} ({}^{\circ} - \phi) u(s)$ $\begin{array}{l} \pi^{+}/K^{+} \text{ production dominated} \\ \text{by scattering off u-quarks:} \simeq - \end{array} \begin{array}{l} \mathbf{10} \mathbf{\overset{^{-}}{x}} \\ \frac{\mathbf{f}_{1\mathrm{T}}^{\perp,\mathbf{u}}(\mathbf{x},\mathbf{p}_{\mathrm{T}}^{2}) \otimes_{\mathcal{W}} \mathbf{D}_{1}^{\mathbf{u} \to \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{\mathrm{T}}^{2})}{\mathbf{f}_{1}^{\mathbf{u}}(\mathbf{x},\mathbf{p}_{\mathrm{T}}^{2}) \otimes \mathbf{D}_{1}^{\mathbf{u} \to \pi^{+}/\mathbf{K}^{+}}(\mathbf{z},\mathbf{k}_{\mathrm{T}}^{2})} \end{array}$ $K^+ = |u \bar{s} \rangle \& \pi^+ = |u \bar{d} \rangle \Rightarrow$ non-trivial role of sea quarks? convolution integrals depend on k_T dependence of fragmentation functions possible difference in dependences on the kinematics integrated over G. Schnell - DESY Zeuthen LC 2010, June 17th, 2010 13

Role of sea quarks

Role of sea quarks

differences biggest in region where strange sea is most different from light sea

Cancelation of fragmentation function

$$\langle \sin(\phi-\phi_S)
angle_{UT}^{\pi^+-\pi^-}(\phi,\phi_S) \propto -rac{4f_{1T}^{\perp,u_v}-f_{1T}^{\perp,d_v}}{4f_1^{u_v}-f_1^{d_v}}$$

Cancelation of fragmentation function

separate each x-bin into two Q² bins:

only in low-Q² region significant (>90% c.l.) deviation

• hint of Q^2 dependence of kaon amplitude

The "others"

Pretzelosity - $sin(3\phi - \phi_s)$

Subleading twist I - $sin(2\phi+\phi_s)$

no significant non-zero signal observed except maybe K⁺

suppressed by one power of $P_{h\perp}$ (compared to, e.g., Sivers)

related to worm-gear h_{1L}^{\perp}

arises solely from longitudinal component of target-spin
 (≤15%)

LC 2010, June 17th, 2010

no significant non-zero signal observed

suppressed by one power of P_{h⊥} (compared to, e.g., Sivers)

• various terms related to pretzelosity, worm-gear, Sivers etc.:

$$\begin{split} \mathcal{W}_{1}(\mathbf{p_{T}},\mathbf{k_{T}},\mathbf{P_{h\perp}}) \left(\mathbf{x}\mathbf{f_{T}^{\perp}}\mathbf{D}_{1} - \frac{\mathbf{M_{h}}}{\mathbf{M}}\mathbf{h_{1T}^{\perp}}\frac{\tilde{\mathbf{H}}}{\mathbf{z}}\right) \\ \mathcal{W}_{2}(\mathbf{p_{T}},\mathbf{k_{T}},\mathbf{P_{h\perp}}) \left[\left(\mathbf{x}\mathbf{h_{T}}\mathbf{H_{1}^{\perp}} + \frac{\mathbf{M_{h}}}{\mathbf{M}}\mathbf{g_{1T}}\frac{\tilde{\mathbf{G}^{\perp}}}{\mathbf{z}}\right) \right. \\ \left. + \left(\mathbf{x}\mathbf{h_{T}^{\perp}}\mathbf{H_{1}^{\perp}} - \frac{\mathbf{M_{h}}}{\mathbf{M}}\mathbf{f_{1T}^{\perp}}\frac{\tilde{\mathbf{D}^{\perp}}}{\mathbf{z}}\right) \right] \end{split}$$

LC 2010, June 17th, 2010

significant non-zero signal observed for negatively charged mesons

must vanish after integration over P_{h⊥} and z, and summation over all hadrons

significant non-zero signal observed for negatively charged mesons

- must vanish after integration over P_{h⊥} and z, and summation over all hadrons
- various terms related to transversity, worm-gear, Sivers etc.:

 $\left(\mathbf{x}\mathbf{f}_{\mathbf{T}}^{\perp}\mathbf{D_{1}}-\frac{\mathbf{M_{h}}}{\mathbf{M}}\mathbf{h_{1}}\frac{\mathbf{\tilde{H}}}{\mathbf{z}}
ight)$

$$\mathcal{W}(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left[\left(\mathbf{xh_T} \mathbf{H_1^{\perp}} + \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{g_{1T}} \frac{\tilde{\mathbf{G}^{\perp}}}{\mathbf{z}} \right] \right]$$

 ${
m xh_T^\perp H_1^\perp}$

LC 2010, June 17th, 2010

 $\frac{\mathbf{M_h}}{\mathbf{M}}\mathbf{f_{11}^{\perp}}$

Back to the beginning of Sivers effect

Back to the beginning of Sivers effect

LC 2010, June 17th, 2010

 $ep^{\uparrow} \to hX$

lepton beam going into the page

 \vec{S}_{N}

scattered lepton undetected
 lepton kinematics unknown

lepton beam going into the page

 \vec{S}_{N}

- scattered lepton undetected
 lepton kinematics unknown
- dominated by quasi-real photo-production (low Q²)
 hadronic component of photon relevant?

lepton beam going into the page

 \vec{S}_{N}

- scattered lepton undetected
 lepton kinematics unknown
- dominated by quasi-real photo-production (low Q²)
 hadronic component of photon relevant?
- cross section proportional to
 S_N (k × p_h) ~ sin φ

 $ep^{\uparrow} \to hX$

lepton beam going into the page

 \vec{S}_{N}

The same services of the servi pin direct of the town of the $= \mathrm{d}^{3} \sigma_{UU} \left[L^{\dagger} \mathrm{d}^{3} \mathrm{d}^{2} \mathrm$ $L_{P}^{\uparrow\uparrow\uparrow} \stackrel{\text{dominated}}{A_{UT}} \stackrel{\circ}{(p_{T}, x_{F})} \stackrel{\circ}{\sin \phi} \stackrel{\circ}{(p_{T}, y_{F})} \stackrel{\circ$ mber developing the section by p_{T} and p_{T} . The complete analysis \vec{p}_{h} rmed in bincenfon canon ponent of 2 set of data relieve the 120 m since tracks, armuch (2.2)binning ison to what 0 there SI = 0 analyses of HERMES all sis. The ast R = 0 and T = 0 a same (2.2)er. See ar the 2D matusis, see section 4.2. (2.2) lepton beam going eld for a given target spin direction († upwards or L downwards) mmetry $A_{A_{IV}}(p_{a_{IV}}x_F, \phi) =$ $\mathbf{d}^{3}N^{\uparrow(\downarrow)} \quad A_{UT}^{\sin\phi}(p_T, x_F)\sin\phi$ $\frac{\mathrm{d}p_T \,\mathrm{d}x_F \,\mathrm{d}\phi_2.4}{\left[L^{\uparrow(\downarrow)} \,\mathrm{d}^3\sigma_{UU} + (-)L_P^{\uparrow(\downarrow)} \,\mathrm{d}^3\sigma_{UT}\right] \,\Omega(p_T, x_F, \phi)}$ G. Sonnell - DESY Zeythen LC 2010, June 17th, 2010 25

The same of the second of the same of the same of the same of the second A HERMEN WE HAVE DE HOUSE CON OF THE pin direction to the states of the $= \mathrm{d}^{3} \sigma_{UU} \left[L^{\dagger} \mathrm{d}^{3} \mathrm{d}^{2} \mathrm{d}^{3} \mathrm{d}^{2} \mathrm{d}^{3} \mathrm{d}^{2} \mathrm{d}^{2} \mathrm{d}^{3} \mathrm{d}^{2} \mathrm{d}^{3} \mathrm{d}^{2} \mathrm{d}^{3} \mathrm$ $L_{P}^{\uparrow\uparrow\downarrow} A_{UT}^{\uparrow\uparrow\downarrow}(p_{T}, x_{F}) \sin \phi + \beta (p_{T}, y_{F}) \sin \phi^{\uparrow\uparrow\downarrow}(p_{T}, x_{F}) \sin \phi^{\uparrow\downarrow}(p_{T}, x_{F}) \sin \phi^{\downarrow\downarrow}(p_{T}, x_{F}) \sin \phi^{\uparrow\downarrow}(p_{T}, x_{F}) \sin \phi^{\downarrow\downarrow}(p_{T}, x_{F}) \oplus^{\downarrow\downarrow}(p_{T}, x_{F}) \oplus^{\downarrow\downarrow}(p_{T}, x_{F}) \oplus^$ mber devents field the sector of the property of the main of the sector of the main rmed in binschancand ponent of 2 set of data reliever della (* 1/20 m) sin (* tracks), "armuch * (2.2)binning **same**....(2.2) ar the 2D matusis, see section 4.2. (2.2) lepton beam going eld for a given target spin direction († upwards or L downwards) $\operatorname{mmetry} A_{\mathcal{A}_{\mathcal{W}}}(p_{\mathcal{A}_{\mathcal{W}}}, \phi) =$ $A_{\rm N} \equiv \frac{\int_{\pi}^{2\pi} d\phi \, \sigma_{\rm UT} \sin \phi - \int_{0}^{\pi} d\phi \, \sigma_{\rm UT} \sin \phi}{1 + \int_{0}^{\pi} d\phi \, \sigma_{\rm UT} \sin \phi}$ $\mathbf{d}^{3}N^{\dagger(\downarrow)} \quad A_{UT}^{\sin\phi}(p_T, x_F)\sin\phi$ $\int_0^{2\pi} \mathrm{d}\phi \,\sigma_{\mathrm{UU}}$ $\frac{\mathrm{d}p_T \,\mathrm{d}x_F \,\mathrm{d}\phi_{2.4}}{\left[L^{\uparrow(\downarrow)} \,\mathrm{d}^3\sigma_{UU} + (-)L_P^{\uparrow(\downarrow)} \,\mathrm{d}^3\sigma_{UT}\right] \,\Omega(p_T, x_F^{\equiv}, \phi) \,\pi^{2} A_{\mathrm{UT}}^{\sin\phi}}$ G. Sonnell - DESY Reythen LC 2010, June 17th, 2010 25

x_F dependence of $A_{UT} \sin \phi$ amplitude

x_F dependence of A_{UT} sin ϕ amplitude

x_F dependence of $A_{UT} \sin \phi$ amplitude

pt dependence of $A_{UT} \sin \phi$ amplitude

pt dependence of $A_{UT} \sin \phi$ amplitude

\mathbf{p}_{T} dependence of $A_{\mathsf{U}\mathsf{T}}$ sin ϕ amplitude

LC 2010, June 17th, 2010

Summary & Outlook

- clear signals for Sivers function observed
- indication of positive (negative) u-quark (d-quark) orbital angular momentum
- pretzelosity either too small or its contribution to semiinclusive DIS too much suppressed
- no sizable sin($2\phi \pm \phi_S$) modulations seen
- significant (and surprising?) non-zero sin(ϕ_s) modulation for π^-
- SSA in inclusive hadron electro-production resemble Sivers effect but different in sign to pp collision
- final Collins results coming out soon