

hunting the OAM @ hermes ...

- a brief introduction
- GPDs & OAM
- observables: A_{UT} in DVCS & exclusive ρ^0
- conclusion & perspectives

workshop on Partonic Transverse Momentum in Hadrons, DUKE-University, March 12/13, 2010

nucleon spin:

$$s_{z}^{n} = \frac{1}{2} = \frac{1}{2} \sum_{q} \Delta q + L_{z}^{q} + \Delta G + L_{z}^{g} = J_{q} + J_{g}$$

$$\uparrow \qquad \uparrow$$

$$\approx 30\% \qquad \approx \text{zero}$$

$$J_{q,g} = \lim_{t \to 0} \frac{1}{2} \int_{-1}^{1} x \, dx \left[H^{q,g}(x,\xi,t) + E^{q,g}(x,\xi,t) \right]$$

$$E^{q} \neq 0$$
 requires orbital angular momentum

proton helicity flipped but quark helicity conserved

GPDs: nucleon tomography

[M. Burkardt, M. Diehl 2002]

FT(GPD) : momentum space \rightarrow impact parameter space:

distribution of partons in plane transverse to longitudinal momentum x

polarised nucleon: spin-orbit correlations (TMDs)

TMDs \longleftrightarrow GPDs

3D structure of hadrons : nucleon tomography

→ complementary:

Wigner distribution: ("mother" function)

 \rightarrow relations between TMDs and GPDs (?)

see talk by L.Gamberg

what do we know about GPDs ?

 E, \widetilde{E} : *nucleon helicity flip* \rightarrow don't appear in DIS \rightarrow new information !

GPDs: caveats

• x is mute variable (integrated over):

 \rightarrow apart from cross-over trajectory (ξ =x) GPDs not directly accessible

• extrapolation $t \rightarrow 0$ is model dependent

cross sections & beam-charge asymmetry $\sim \text{Re}(T^{DVCS})$

beam or target-spin asymmetries ~ $Im(T^{DVCS})$

→ double DVCS: $|x| < \xi$

attempts to constrain J_a

$$J_{q} = \lim_{t \to 0} \frac{1}{2} \int_{-1}^{1} x \, dx \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

GPD models: J_q free parameter in ansatz for *E*

observables sensitive to E: • DVCS A_{UT} : HERMES

- nDVCS A_{LU} : Hall A
- excl. ρ^{o} A_{UT} : HERMES, COMPASS

 $x + \xi$

H,E,Ĥ,Ĕ

t

γ, ρ°, π...

deeply virtual compton scattering

@HERMES, JLab:

DVCS << Bethe-Heitler

$$d\sigma \propto |\tau_{BH}|^{2} + |\tau_{DVCS}|^{2} + (\tau_{BH}^{*}\tau_{DVCS} + \tau_{DVCS}^{*}\tau_{BH})$$

DVCS interference term $d\sigma \propto |\tau_{BH}|^2 + |\tau_{DVCS}|^2 + (\tau_{BH}^* \tau_{DVCS} + \tau_{DVCS}^* \tau_{BH})$

→ different charges: e⁺ e⁻

$$d\sigma(e^+,\phi) - d\sigma(e^-,\phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos\phi$$

DVCS interference term

 $d\sigma \propto |\tau_{BH}|^2 + |\tau_{DVCS}|^2 + (\tau_{BH}^* \tau_{DVCS} + \tau_{DVCS}^* \tau_{BH})$

 \rightarrow different charges: e⁺ e⁻

$$d\sigma(e^+,\phi) - d\sigma(e^-,\phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos\phi$$

→ polarisation observables:

• beam spin asymmetry A_{LU}:

 $d\sigma(\overrightarrow{e},\phi) - d\sigma(\overleftarrow{e},\phi) \propto \operatorname{Im}[F_1\mathcal{H}] \cdot \sin\phi + \dots$

• longitudinal target spin asymmetry A_{UL}:

$$d\sigma(\overleftarrow{P},\phi) - d\sigma(\overrightarrow{P},\phi) \propto \operatorname{Im}[F_1\widetilde{\mathcal{H}}] \cdot \sin \phi + \dots$$

• transverse target spin asymmetry A_{UT} : $d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi) \propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S) \cos\phi$ $+ \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S) + \dots$

 $[F_{1'}, F_2:$ Pauli and Dirac *FF*, $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}:$ Compton *FF*: moments of corresponding GPDs]

DVCS A_{UT}

sensitivity to *E* (J_q) from both interference and DVCS² term:

$$\sigma(\phi, P_{\ell}, S_T) = \sigma_{UU}(\phi) \times \left[1 + S_T \mathcal{A}_{UT}^{\text{DVCS}}(\phi, \phi_s) + S_T e_{\ell} \mathcal{A}_{UT}^{\text{I}}(\phi, \phi_s) + e_{\ell} \mathcal{A}_C(\phi) \right]$$

$$\mathcal{A}_{UT}^{\mathrm{I}}(\phi,\phi_S) = \sum_{n=0}^{2} A_{UT,I}^{\sin(\phi-\phi_S)\cos(n\phi)}\sin(\phi-\phi_S)\cos(n\phi) + \sum_{n=1}^{2} A_{UT,I}^{\cos(\phi-\phi_S)\sin(n\phi)}\cos(\phi-\phi_S)\sin(n\phi)$$

analogous modulations for DVCS² term

n = 0, 1 terms found to be most sensitive to values of $J_{\mu} \rightarrow$

attempts to constrain J_q

 J_{a} free parameter in ansatz for *E*

difference of polarised cross sections on $LH_2 \& LD_2 \rightarrow nDVCS$: [PRL99(2007)]

$$[\mathcal{C}_n^I] = F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$$

p target: $\mathcal{C}_n^I \sim \mathcal{H}$ **n** target: $\mathcal{C}_n^I \sim \mathcal{E} \rightarrow \mathcal{F}_I$ small

 \rightarrow cancellation between u and d quark pol. pdfs in $\mathcal H$

difference of polarised cross sections on LH₂ & LD₂ \rightarrow **n**DVCS: [PRL99(2007)]

— VGG : tw-2 CFF

difference of polarised cross sections on LH₂ & LD₂ \rightarrow **n**DVCS: [PRL99(2007)]

a word about 'user friendly' GPD models

VGG: [Vanderhaegen, Guichon, Guidal 1999]

- double distributions [Radyshkin]; factorised or regge-inspired t-dependence
- D-term to restore full polynomiality
- skweness depending on free parameters $b_{val} \& b_{sea}$
- includes tw-3 (WW approx)

Dual: [Guzey, Teckentrup 2006, 2009]

- GPDs based on infinite sum of t channel resonances (minimal: truncated k=[0,2])
- factorised or regge-inspired t-dependence
- tw-2 only

→ more models & new approaches [... an incomplete list]

- polynomials [Belitsky etal.(00), Liuti etal.(07), Moutarde(09)]
- analytical [Belitsky, Muller, Kirchner(01)]
- dispersion integral fits & flexible GPD modelling [Kumericki, Muller(08,09)]

a word about 'user friendly' GPD models

VGG: [Vanderhaegen, Guichon, Guidal 1999]

- double distributions [Radys
- D-term to restore full poly
- skweness depending on fr
- includes tw-3 (WW approx

Dual: [Guzey, Teckentrup 2006, 2009]

- GPDs based on infinite sur
- factorised or regge-inspire
- tw-2 only

\rightarrow more models & new at

- polynomials [Belitsky etal.(00), Liuti etal.(07), Moutarde(09)]
- analytical [Belitsky, Muller, Kirchner(01)]
- dispersion integral fits & flexible GPD modelling [Kumericki, Muller(08,09)]

 \rightarrow describes well kinematic dependencies of beam charge & beam spin asymmetries \rightarrow after correction in calculations: magnitude off by factor 2-4

- \rightarrow describes well beam charge & target spin asymmetries
- \rightarrow fails for beam spin asymm. & cross sections
- \rightarrow charge asymm. favours 'no D-term' \leftarrow contradicts χ QSM & lattice results

...nevertheless: constraining J_q

 J_{a} free parameter in ansatz for *E*

exclusive ρ^0 production

exclusive ρ^0 production

after the full glory of transverse SDME extraction [formalism: M. Diehl (2007)]:

overall

- \rightarrow more data coming: COMPASS , CLAS12 with transverse target
- \rightarrow more models: Goloskokov, Kroll (09)

lattice's opinion about \mathcal{J}^{q}

lattice's opinion about $\mathcal{J}^q \rightarrow L^q$

conclusion

presence of OAM w/o debate \rightarrow how to measure it ?

relations GPDs $\leftarrow \rightarrow$ TMDs ?

perspectives

hunting the OAM

- contribution to nucleon spin:
 - determination of $\Delta\Sigma$ and ΔG \rightarrow missing piece attributed to OAM
- quest for from scaling violation of g_1
 - charm production & high pT hadrons over wide x_B range

EIC @highest possible energies

 ΔG :

'direct' measurement via Ji-SR (GPDs)

spin-orbit correlations from TMDs

- → beam charge asymmetry $Re\mathcal{H}$
- \rightarrow beam spin asymmetry

 ${
m Im}{\cal H}$

 \rightarrow transverse target spin asymm.

 $\operatorname{Im}(\mathcal{H}\mathcal{E})$

 \rightarrow longitudinal target spin asymm.

 \rightarrow double spin asymmetry

exclusive ρ^0 production

SDME values

exclusive meson production

GPD model: Goloskokov, Kroll

variant 1, 2, 3, 4