

recent results from HERMES

RBRC workshop on "Progress in high pT Physics at RHIC", BNL, USA, March 17-19 2010

HERMES @HERA: a reminder

27.5 GeV self-polarised (e^+/e^-) \iff 920 GeV p < P_b > up to 0.55

1/7/07@1:09:56 am

HERA

HERMES @HERA: a reminder

27.5 GeV (e+/e−)→

HERMES @HERA: a reminder

 (E, \vec{k})

27.5 GeV (e+/e−)→

2006/07 HERMES with recoil det. 'dedicated' to exclusive processes, but not only...

Ρ

(U)

π

U)

d

the quest for the spin of the nucleon

$$\frac{1}{2} = \frac{1}{2} \sum_{q} \Delta \Sigma + \Delta G + L_{q} + L_{g}$$

• inclusive DIS from longitudinally polarised D target: [PRD75(2007)] $\Delta \Sigma = 0.330 \pm 0.025^{(exp.)} \pm 0.011^{(theory)} \pm 0.028^{(evol.)}$

SIDIS $A_{LL} \rightarrow$ flavour decomposition

• high pT hadron production: [arXiv:1002.3921, submitted to JHEP] $\Delta g / g |_{x=0.22} = 0.049 \pm 0.034^{(\text{stat})} \pm 0.010^{(\text{sys-exp})} + 0.126_{(\text{sys-model})} - 0.099^{(\text{sys-exp})}$

the quest for the spin of the nucleon

 $\frac{1}{2} = \frac{1}{2} \sum_{q} \Delta \Sigma + \Delta G + L_q + L_g$ ~30% ≈zero

outline:

longitudinal momentum & spin structure: role of strange quarks

transverse spin phenomena & TMDs:

- effects in inclusive processes
- transversity & friends: spin-orbit correlations
- intrinsic transverse momentum effects

exclusive processes & GPDs: nucleon tomography

hadron production

no SIDIS xsection

measurements $\rightarrow \pi$, K multiplicities compared to theory: **DSS:** *FF* from combined NLO analysis of singleinclusive hadron production in e⁺e⁻, pp and SIDIS

[deFlorian,Sassot,Stratmann PRD75,76(2007)]

hadron production

no SIDIS xsection

measurements $\rightarrow \pi$, K *multiplicities* compared to theory

outlook:

- → publication in preparation $(\pi^{+/-/0}, K^{+/-)}$:
 - ~2 x more data
 - 2D binning (x,z), (z,pT)

→ ~ 6 x more data on tape from
 last 1.5a running with unpolarised
 `high density' H, D targets

longitudinal momentum & spin structure

strange quark distributions

- → use isoscalar probe + target: $S^{p}(x) = S^{n}(x)$; $S(x) = s(x) + \overline{s(x)}$
- → ingrediants: $K^+ + K^-$ multiplicities, $A_{1,d}^{K^++K^-}(x, z, Q^2)$, $A_{1,d}(x, Q^2)$

→ strange *FF*:
$$\int_{0.2}^{0.8} dz D_S^K(z) = 1.27 \pm 0.13$$
 [DSS, PRD75(2007)]

→ LO extraction of $S(x) \& \Delta S(x)$ with only assumptions:

- isospin symmetry between proton and neutron
- charge conjugation invariance in fragmentation

strange quark distributions

→ use isoscalar probe + target: $S^{p}(x) = S^{n}(x)$; $S(x) = s(x) + \overline{s}(x)$

→ ingrediants: $K^+ + K^-$ multiplicities, $A_{1,d}^{K^++K^-}(x, z, Q^2)$, $A_{1,d}(x, Q^2)$

→ strange *FF*: $\int_{0.2}^{0.8} dz D_S^K(z) = 1.27 \pm 0.13$ [DSS, PRD75(2007)]

strange quark distributions

→ use isoscalar probe + target: $S^{p}(x) = S^{n}(x)$; $S(x) = s(x) + \overline{s(x)}$

→ ingrediants: $K^+ + K^-$ multiplicities, $A_{1,d}^{K^++K^-}(x,z,Q^2)$, $A_{1,d}(x,Q^2)$

transverse spin phenomena

transverse effects in *inclusive* DIS

two-photon exchange

 candidate to explain discrepancy in form-factor __k measurements

• interference between $1\gamma \& 2\gamma$ exchange leads to SSA in *inclusive* DIS off transversely polarised target $\sigma_{UT} \propto \vec{S} \cdot (\vec{k} \times \vec{k}')$ [Metz,Schlegel,Goeke PLB643(2006)]

$$A_{N} = \frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}} = \frac{2}{\pi} A_{UT}^{\sin \phi_{S}} \text{ estimated size: O(10-4 - 10-2)}$$
$$A_{UT}(x, Q^{2}, \phi_{S}) = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

• sensitive to beam charge due to odd number of e.m. couplings to beam

any sign of 2γ exchange ?

[PLB682(2010)]

→ no evidence of 2γ exchange within experimental uncertainty of 10^{-3}

5y

SIDIS cross section

$$\sigma_{XY}^{h} \propto \sum_{f} \hat{\sigma}_{part} \otimes pdf(x,k_{T}) \otimes frag^{q,g \rightarrow h}(z,p_{T})$$
8 leading-twist terms

$$d\sigma = \overline{d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1}} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$

$$+ S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+ S_{T} \left\{ \frac{\sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10}}{\frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{11}} + \frac{1}{Q} \sin \phi \, d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15}} \right\}$$

leading-tw distribution functions						
	$\sigma^{ extsf{h}}_{XY} onumber \ / $	$\propto \sum_{f} \hat{\sigma}_{part}$ ($\otimes pdf(x,k_T)$	\otimes	$frag^{q,g \rightarrow h}(z, z)$	$p_T)$
on the	ŬŬ	$\frac{1}{\cos(2\phi_h^l)}$	$\begin{array}{c} f_1 = \bullet \\ h_1^{\perp} = \bullet^- \end{array}$	\otimes	$D_1 = \bullet$ $H_1^{\perp} = \bullet^- \bullet$	-
menu	UL	$\sin(2\phi_h^l)$	$h_{1L}^{\perp} = {}^{\bullet} ^{\bullet}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$	-
today	UT	$\sin(\phi_h^l + \phi_S^l)$	$h_1 = \underbrace{\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\ \bullet \end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\ \bullet \end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\ \bullet \end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\}_{F_1} \underbrace{\begin{array}{c} \bullet \\ \bullet \end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\}_{F_1} \underbrace{\begin{array}{c} \bullet \\}_{F_1} \underbrace{\begin{array}{c} \bullet \\}_{F_1} \underbrace{\begin{array}{c} \bullet \\}_{F_1} \underbrace{\end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\\\\\ \bullet \end{array}}_{F_1} \underbrace{\end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\\\\\ \bullet \end{array}}_{F_1} \underbrace{\end{array}}_{F_1} \underbrace{\end{array}}_{F_1} \underbrace{\begin{array}{c} \bullet \\\\\\ \bullet \end{array}\\}_{F_1} \underbrace{\end{array}}_{F_1} \underbrace{\end{array}}_{\end{array}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$	-
chiral-odd		$\sin(\phi_h^l - \phi_S^l)$ $\sin(3\phi_h^l - \phi_S^l)$	$J_{1T} \neq \bigcirc - \bigcirc \\ h_{1T} \neq \bigcirc - \bigcirc \\ h_{1T} \neq \bigcirc - \bigcirc \\ \bullet \end{pmatrix}$	\otimes	$D_1 = \bigcirc$ $H_1^{\perp} = \textcircled{\bullet}^- \textcircled{\bullet}$	—
	LL	1	$g_1 = \bullet $	\otimes	$D_1 = \bullet$	
	LT	$\cos(\phi_h^l-\phi_S^l)$	$g_{1T} = - +$	⊗ on′	$D_1 = \bullet$	

leading-tw distribution functions

@leading twist, integrated over pT:

leading-tw distribution functions

'Sivers'

via *Collins* fragmentation fct.

Collins amplitudes -- extras: 2D binning --

kinematic dependencies often don't factorise

 \rightarrow bin in as many independent variables as possible:

z @`fixed' x

 $P_{h\!\perp}$ @`fixed' z

x @`fixed' z

z @`fixed' $P_{h\perp}$

Collins amplitudes -- extras: 2D binning --

kinematic dependencies often don't factorise

 \rightarrow bin in as many independent variables as possible:

transversity & Collins FF

e⁺

[Anselmino etal. PRD75(2007); update: 2009]

spin-orbit correlations

Sivers function:

[Matthias Burkardt]

a non-zero Sivers fct. requires non-zero orbital angular momentum !

Sivers amplitudes

Sivers amplitudes for π

Sivers distribution for valence quarks

transverse SSA of pion cross section difference:

Sivers: kaon amplitudes

Sivers: the kaon riddle

• $K^+ = |uar{s}
angle$ & $\pi^+ = |uar{d}
angle$ ightarrow non-trival role of sea quarks

- \bullet convolution integral in numerator depends on $p_{\rm T}$ dependence of FF
- differences in dependences on kinematics integrated over

role of sea quarks

 \rightarrow differences biggest in region where strange sea is most different from light sea

the shape of the nucleon

 $h_{1\mathrm{T}}^{\perp}\otimes H_{1\mathrm{T}}^{\perp}$

 $g_1(x) - h_1(x) = h_{1T}^{\perp(1)}(x)$ [model dependent]

pretzelosity: measure for relativistic effects

the shape of the nucleon ⁽⁾ 'pretzelosity'

• expected to scale as $(P_{\rm h\perp})^3$

→ suppressed wrt. Collins & Sivers

transverse spin effects the unpolarised cross section

spin-orbit effect (Boer-Mulders DF):

correlation between quark transverse motion and transverse spin

unpolarised cross section

$$d\sigma = d\sigma_{UU} + \cos 2\phi \, d\sigma_{UU} + \frac{1}{Q} \cos \phi \, d\sigma_{UU} + \dots$$

analysis challenge

500

analysis challenge

<**COS** ϕ >: intrinsic quark transverse momentum

→ different effects for different pion charges ... **unexpected** for Cahn effect!

- Boer-Mulders term important ?
- < k_T> flavour dependent ?

<**cos** 2ϕ >: spin-orbit correlations

 $h_1^{\perp}(x,k_T) \otimes H_1^{\perp}(z,p_T)$

deuterium \approx hydrogen values \rightarrow B-M must have same sign for u & d

$<\cos 2\phi$ >: spin-orbit correlations

 $h_1^{\perp}(x,k_T) \otimes H_1^{\perp}(z,p_T)$

models: same sign for u & d Boer-Mulders fct.

inclusive hadrons

large transverse single-spin asymmetries @ center of mass energies:

 $p p^{\uparrow} \rightarrow h X$

6.6 GeV

conclusion & outlook

 \approx 3 years after HERA shutdown many exciting results still to come:

- final SIDIS A₁ for pions, kaons, protons
- multiplicities for pions, kaons; factor ~6 more statistics to be analysed

transverse spin effects & intrinsic k_T:

publications in preparation:

- full set of $A_{UT} \& A_{LT}$ moments \rightarrow new quality: p_T weighted asymmetries
- azimuthal asymmetries in unpolarised cross section

not discussed here: wealth of results from exclusive processes
→ GPDs & nucleon tomography : complementary to TMDs