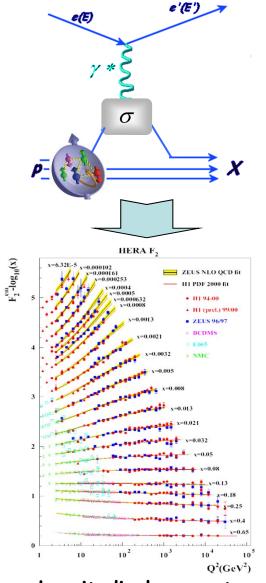


Accessing TMDs via single and doublespin asymmetries at HERMES

Luciano Pappalardo pappalardo@fe.infn.it (for the HERMES Collaboration)

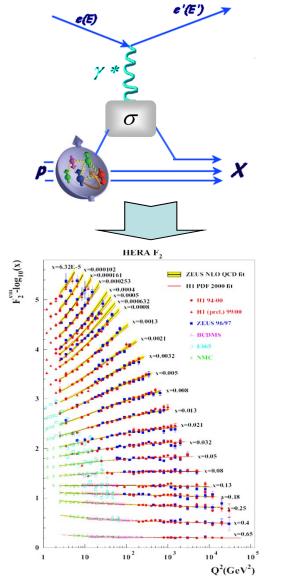
DIS2011 - Newport News VA USA, April 11-15 2011

Quantum phase-space tomography of the nucleon



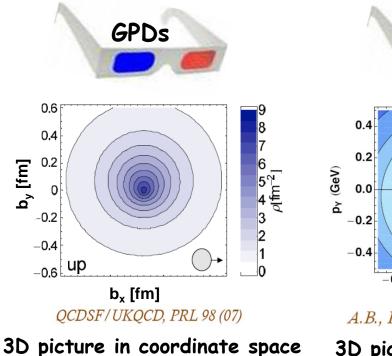
Longitudinal momentum structure of the nucleon

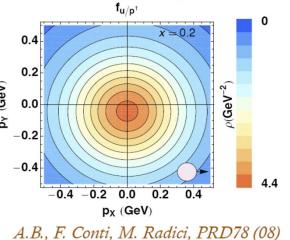
Quantum phase-space tomography of the nucleon



Longitudinal momentum structure of the nucleon

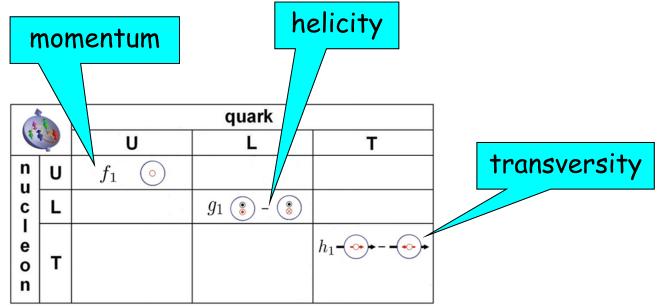
TMDs



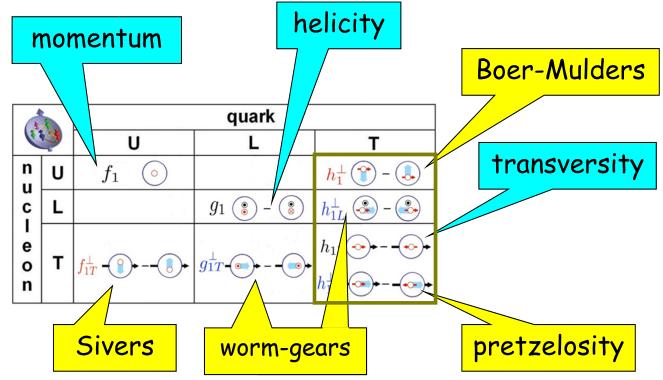


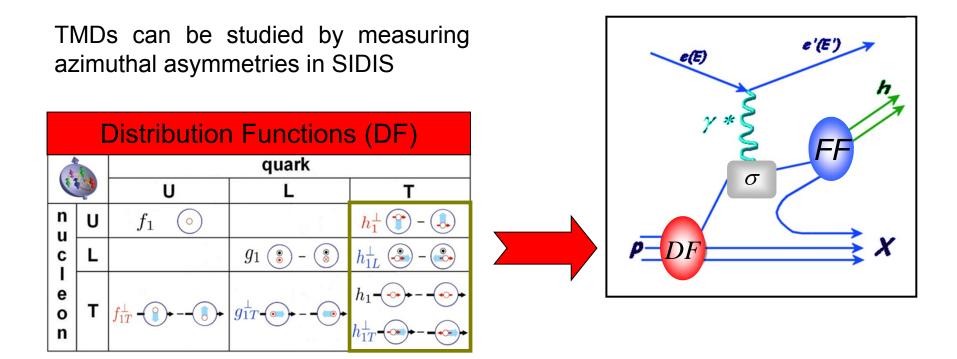
3D picture in momentum space

The table of TMDs

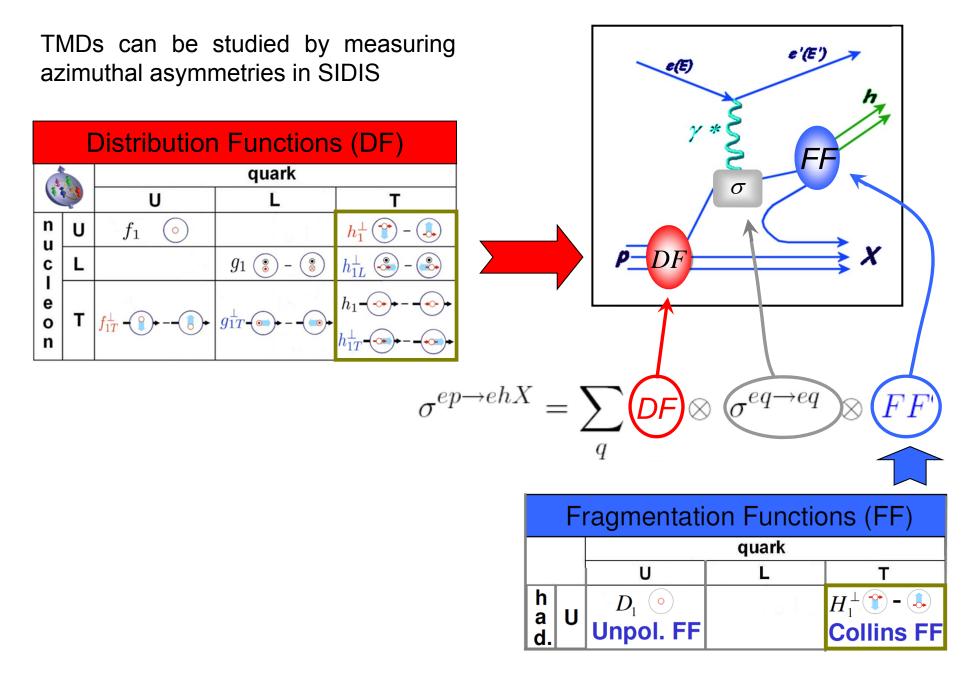


The table of TMDs



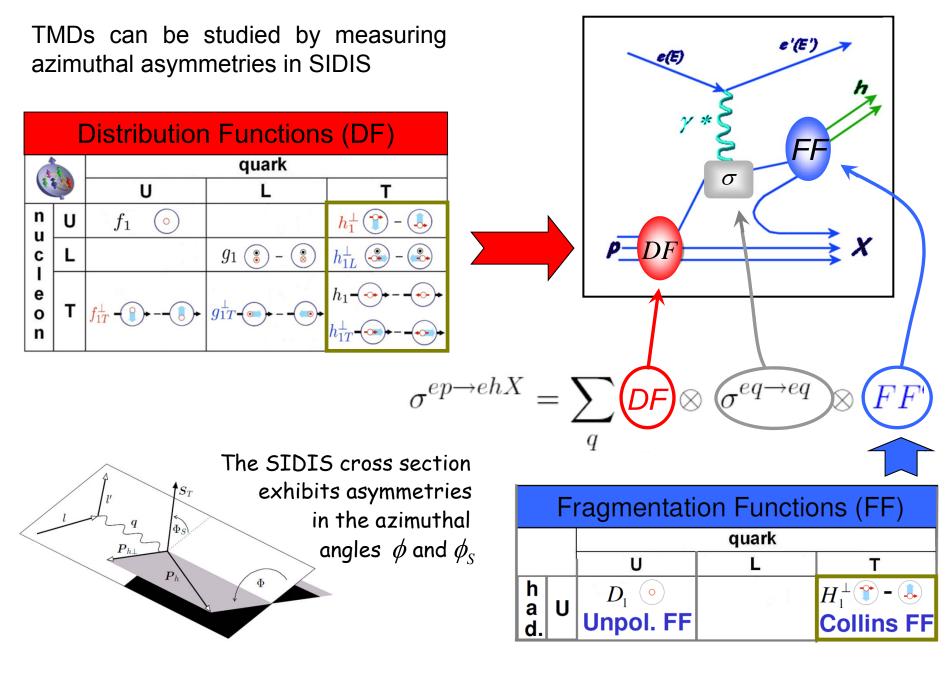


functions in red are naive T-odd



functions in red are naive T-odd

functions in green box are chirally odd ⁷

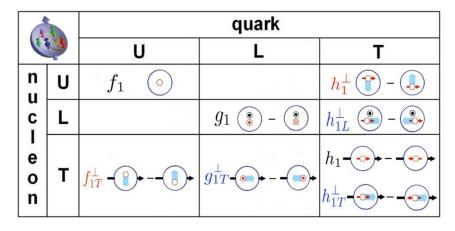


functions in red are naive T-odd

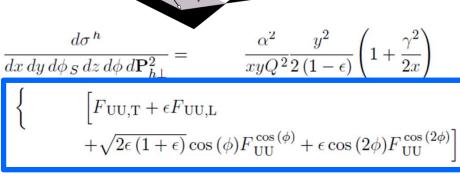
The SIDIS cross-section

 $\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$ $d\sigma^{h}$ $F_{\rm UU,T} + \epsilon F_{\rm UU,L}$ $+\sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\mathrm{UU}}^{\cos (\phi)} + \epsilon \cos (2\phi) F_{\mathrm{UU}}^{\cos (2\phi)} \right]$ + $\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin(\phi) F_{LU}^{\sin(\phi)} \right]$ + $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\text{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\text{UL}}^{\sin (2\phi)} \right]$ + $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$ + S_T $\left[\sin(\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin(\phi - \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin(\phi - \phi_S)} \right) + \epsilon \sin(\phi + \phi_S) F_{\mathrm{UT}}^{\sin(\phi + \phi_S)} + \epsilon \sin(3\phi - \phi_S) F_{\mathrm{UT}}^{\sin(3\phi - \phi_S)} \right]$ $+\sqrt{2\epsilon (1+\epsilon)}\sin{(\phi_S)}F_{\mathrm{UT}}^{\sin{(\phi_S)}}$ $+\sqrt{2\epsilon (1+\epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)}$

+
$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right]$$



The SIDIS cross-section



 Φ

+
$$\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\rm LU}^{\sin (\phi)} \right]$$

 Φ

 P_h

+
$$S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)}\right]$$

+
$$S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$$

+
$$S_T$$
 $\left[\sin (\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin (\phi - \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin (\phi - \phi_S)} \right) \right.$
+ $\epsilon \sin (\phi + \phi_S) F_{\mathrm{UT}}^{\sin (\phi + \phi_S)} + \epsilon \sin (3\phi - \phi_S) F_{\mathrm{UT}}^{\sin (3\phi - \phi_S)} + \sqrt{2\epsilon (1 + \epsilon)} \sin (\phi_S) F_{\mathrm{UT}}^{\sin (\phi_S)} + \sqrt{2\epsilon (1 + \epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)} \right]$

+
$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right] \right\}$$

	E.	quark		
C		U	L	Т
n u	U	f_1 \bigcirc		h_1^{\perp} () - (
C	L		g_1 (\bigcirc - (\bigotimes)	h_{1L}^{\perp} · · · · ·
e o n	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 - \bigcirc \bigcirc +$ $h_{1T}^{\perp} - \bigcirc \bigcirc +$

$\mathbf{f} \mathbf{S}_T$ Φ_s P_h

The SIDIS cross-section

	(
$\frac{d\sigma^{h}}{dxdyd\phi_{S}dzd\phid\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$	
$\begin{cases} \begin{bmatrix} F_{\mathrm{UU,T}} + \epsilon F_{\mathrm{UU,L}} \\ + \sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\mathrm{UU}}^{\cos (\phi)} + \epsilon \cos (2\phi) F_{\mathrm{UU}}^{\cos (2\phi)} \end{bmatrix} \end{cases}$	
+ $\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\rm LU}^{\sin (\phi)} \right]$	
+ $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)}\right]$	
+ $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\text{LL}} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\text{LL}}^{\cos(\phi)} \right]$	
+ S_T $\left[\sin(\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin(\phi - \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin(\phi - \phi_S)} \right) + \epsilon \sin(\phi + \phi_S) F_{\mathrm{UT}}^{\sin(\phi + \phi_S)} + \epsilon \sin(3\phi - \phi_S) F_{\mathrm{UT}}^{\sin(3\phi - \phi_S)} + \epsilon \sin(3\phi - \phi_S) F_{\mathrm{UT}}^{\sin(\phi - \phi_S)} \right]$)

$$\begin{bmatrix} \sin (\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\mathrm{int}(\phi + \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\mathrm{int}(\phi + \phi_S)} \right) \\ +\epsilon \sin (\phi + \phi_S) F_{\mathrm{UT}}^{\sin (\phi + \phi_S)} + \epsilon \sin (3\phi - \phi_S) F_{\mathrm{UT}}^{\sin (3\phi + \phi_S)} \\ +\sqrt{2\epsilon (1 + \epsilon)} \sin (\phi_S) F_{\mathrm{UT}}^{\sin (\phi_S)} \\ +\sqrt{2\epsilon (1 + \epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)} \end{bmatrix}$$

$$+ S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right] \right\}$$

	- Euro	quark		
		U	L	Т
n u	U	f_1 \bigcirc		h_1^{\perp} (*) - (.)
C	L		g_1 (\odot - (\otimes)	h_{1L}^{\perp} · · · · ·
l e o n	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 - \bullet \bullet \bullet$ $h_{1T}^{\perp} - \bullet \bullet \bullet$

(

The SIDIS cross-section

$\frac{d\sigma^{h}}{dxdyd\phi_{S}dzd\phid\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$	
$\begin{cases} \begin{bmatrix} F_{\rm UU,T} + \epsilon F_{\rm UU,L} \\ + \sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\rm UU}^{\cos(\phi)} + \epsilon \cos (2\phi) F_{\rm UU}^{\cos(\phi)} \end{bmatrix} \end{cases}$	$^{(2\phi)} ight]$

+ $\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\rm LU}^{\sin (\phi)} \right]$

+ $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\text{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\text{UL}}^{\sin (2\phi)} \right]$

+
$$S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$$

+
$$S_T$$
 $\left[\sin (\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin (\phi - \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin (\phi - \phi_S)} \right) \right.$
+ $\epsilon \sin (\phi + \phi_S) F_{\mathrm{UT}}^{\sin (\phi + \phi_S)} + \epsilon \sin (3\phi - \phi_S) F_{\mathrm{UT}}^{\sin (3\phi - \phi_S)} \right.$
+ $\sqrt{2\epsilon (1 + \epsilon)} \sin (\phi_S) F_{\mathrm{UT}}^{\sin (\phi_S)} \left.$
+ $\sqrt{2\epsilon (1 + \epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)} \right]$

$$+ S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right] \right\}$$

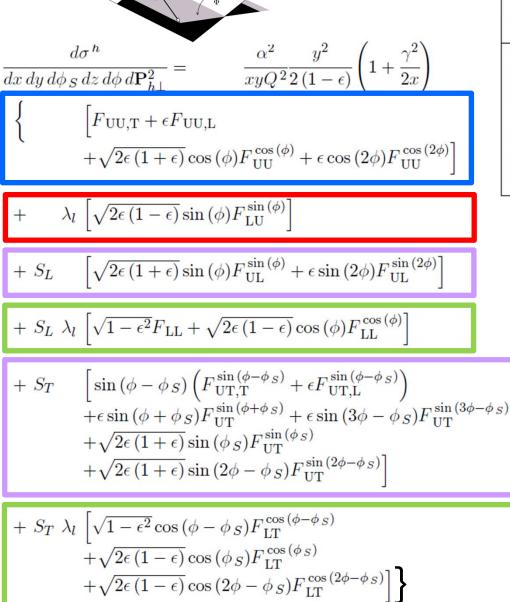
		quark		
		U	L	Т
n u	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
C	L		g_1 (\bigcirc - (\bigotimes)	h_{1L}^{\perp} · · · · ·
e o n	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet \bigcirc \bullet$

The SIDIS cross-section

P_h ϕ
$\frac{d\sigma^{h}}{dxdyd\phi_{S}dzd\phid\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$
$\begin{cases} \left[F_{\rm UU,T} + \epsilon F_{\rm UU,L} + \sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\rm UU}^{\cos(\phi)} + \epsilon \cos (2\phi) F_{\rm UU}^{\cos(2\phi)}\right] \end{cases}$
+ $\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\rm LU}^{\sin (\phi)} \right]$
+ $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\text{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\text{UL}}^{\sin (2\phi)}\right]$
+ $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$
+ S_T $\left[\sin (\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin (\phi - \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin (\phi - \phi_S)} \right) \right.$ + $\epsilon \sin (\phi + \phi_S) F_{\mathrm{UT}}^{\sin (\phi + \phi_S)} + \epsilon \sin (3\phi - \phi_S) F_{\mathrm{UT}}^{\sin (3\phi - \phi_S)} \right.$ + $\sqrt{2\epsilon (1 + \epsilon)} \sin (\phi_S) F_{\mathrm{UT}}^{\sin (\phi_S)} \left.$ + $\sqrt{2\epsilon (1 + \epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)} \right]$
$+ S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right] \right\}$

		quark		
		U	L	Т
n u	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
C	L		g_1 (\bigcirc - (\bigotimes)	h_{1L}^{\perp} $\textcircled{\baselinetwidth{\circ}}$ – $\textcircled{\baselinetwidth{\circ}}$
e o n	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet - \bullet \bigcirc \bullet$

The SIDIS cross-section



		quark		
		U	L	Т
n u	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
C	L		g_1 (\odot) - (\odot)	h_{1L}^{\perp} · · · · ·
l e o n	т	f_{1T}^{\perp} (8)+	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet \bigcirc \bullet$

How can we disentangle all these contributions ?

EXPERIMENT: setting the proper beam and target polarization states (U, L, T)

ANALYSIS: e.g. fitting the cross section asymmetry for opposite spin states and extracting the relevant Fourier components based on their peculiar azimuthal dependences.

The SIDIS cross-section

$$\begin{aligned} \frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2} \, y^{2}}{xyQ^{2} \, 2 \, (1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right) \\ \left\{ \begin{array}{c} \left[F_{\mathrm{UU,T}} + \epsilon F_{\mathrm{UU,L}} + \sqrt{2\epsilon \, (1+\epsilon)} \cos \left(\phi\right) F_{\mathrm{UU}}^{\cos \left(\phi\right)} + \epsilon \cos \left(2\phi\right) F_{\mathrm{UU}}^{\cos \left(2\phi\right)}\right] \\ + \lambda_{l} \left[\sqrt{2\epsilon \, (1-\epsilon)} \sin \left(\phi\right) F_{\mathrm{LU}}^{\sin \left(\phi\right)}\right] \\ + S_{L} \left[\sqrt{2\epsilon \, (1+\epsilon)} \sin \left(\phi\right) F_{\mathrm{UL}}^{\sin \left(\phi\right)} + \epsilon \sin \left(2\phi\right) F_{\mathrm{UL}}^{\sin \left(2\phi\right)}\right] \\ + S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{\mathrm{LL}} + \sqrt{2\epsilon \, (1-\epsilon)} \cos \left(\phi\right) F_{\mathrm{LL}}^{\cos \left(\phi\right)}\right] \\ + S_{T} \left[\sin \left(\phi - \phi_{S}\right) \left(F_{\mathrm{UT,T}}^{\sin \left(\phi - \phi_{S}\right)} + \epsilon F_{\mathrm{UT,L}}^{\sin \left(\phi - \phi_{S}\right)}\right) \\ + \epsilon \sin \left(\phi + \phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(\phi + \phi_{S}\right)} + \epsilon \sin \left(3\phi - \phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(3\phi - \phi_{S}\right)} \\ + \sqrt{2\epsilon \, (1+\epsilon)} \sin \left(\phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(\phi - \phi_{S}\right)} \\ + \sqrt{2\epsilon \, (1+\epsilon)} \sin \left(2\phi - \phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(\phi - \phi_{S}\right)} \\ + \sqrt{2\epsilon \, (1-\epsilon)} \cos \left(\phi - \phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(\phi - \phi_{S}\right)} \\ + \sqrt{2\epsilon \, (1-\epsilon)} \cos \left(2\phi - \phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(2\phi - \phi_{S}\right)} \right] \right\} \end{aligned}$$

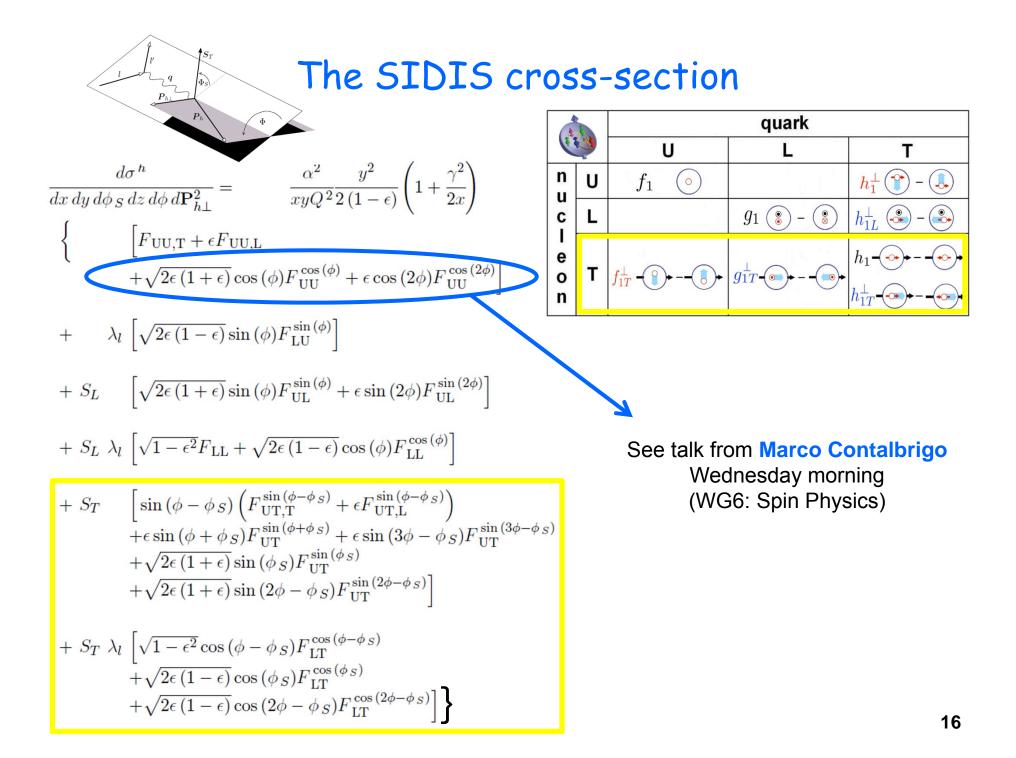
 $\mathbf{f} \mathbf{S}_T$

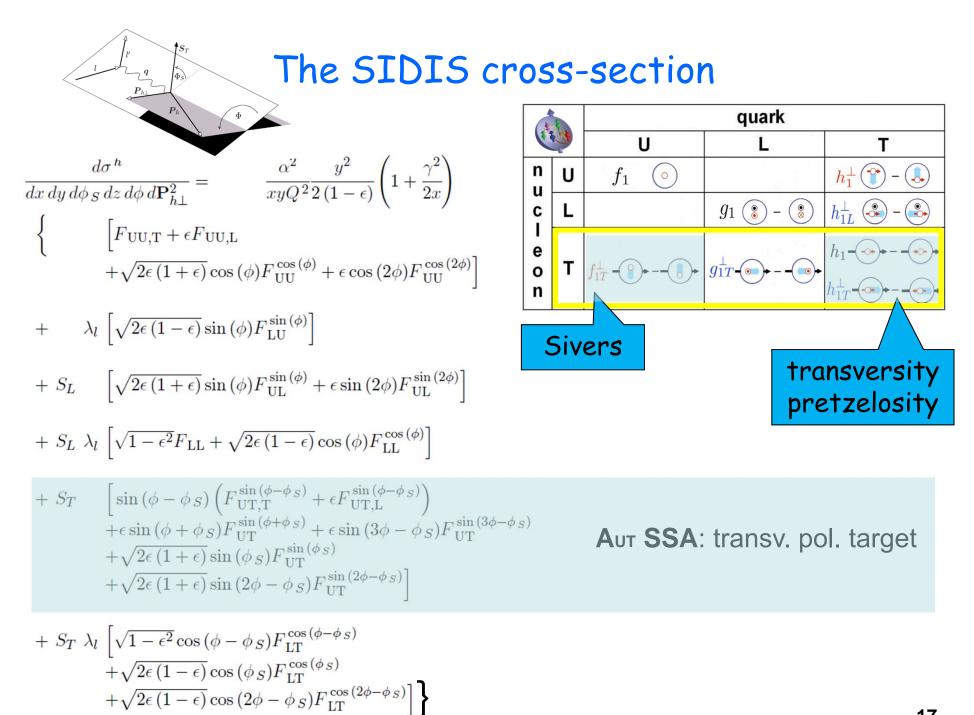
 Φ_S

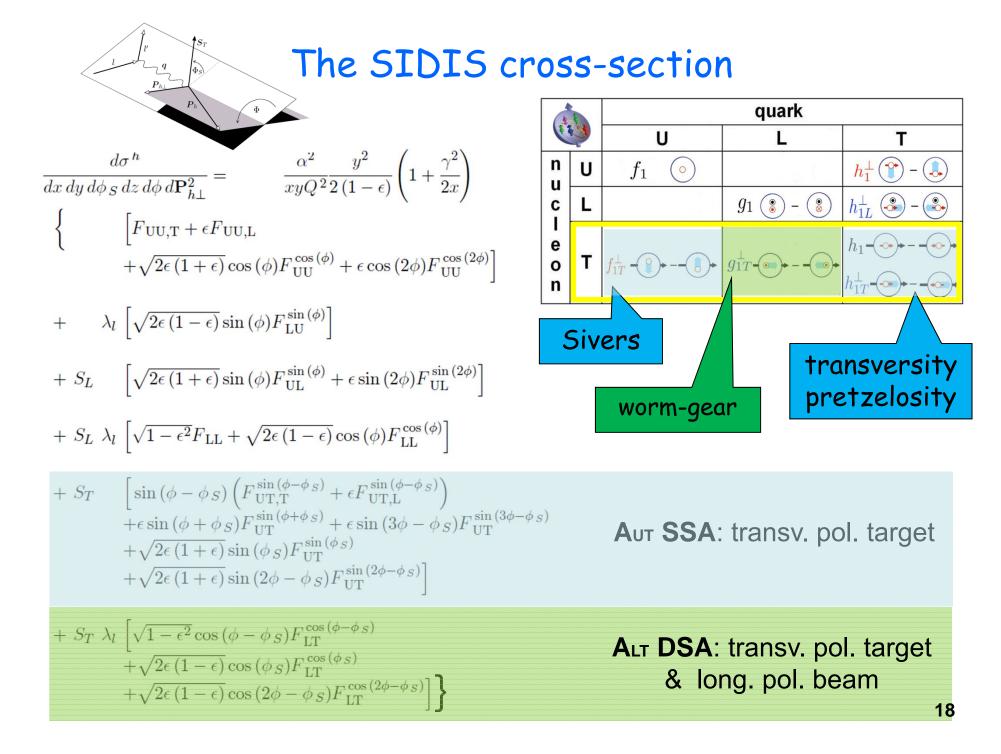
Φ

 P_h

		quark		
		U	L	Т
n u	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
C	L		g_1) -)	h_{1L}^{\perp} $\textcircled{\baselinetwidth{\circ}}$ – $\textcircled{\baselinetwidth{\circ}}$
e O N	т	f_{1T}^{\perp} - () - ()	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet \bigcirc \bullet$







Selected results from A_{UT} SSAs

The Sivers effect $\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$ $F_{\rm UU,T} + \epsilon F_{\rm UU,L}$ $+\sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\mathrm{UU}}^{\cos (\phi)} + \epsilon \cos (2\phi) F_{\mathrm{UU}}^{\cos (2\phi)} \Big]$ + $\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin(\phi) F_{LU}^{\sin(\phi)} \right]$ + $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)} \right]$ + $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$ + S_T + $\epsilon \sin (\phi - \phi_S) \left(F_{\text{UT},\text{T}}^{\sin (\phi - \phi_S)} + \epsilon F_{\text{UT},\text{L}}^{\sin (\phi - \phi_S)} \right)$ + $\epsilon \sin (\phi + \phi_S) F_{\text{UT}}^{\sin (\phi + \phi_S)} + \epsilon \sin (3\phi - \phi_S) F_{\text{UT}}^{\sin (3\phi - \phi_S)}$ $+\sqrt{2\epsilon (1+\epsilon)}\sin (\phi_S) F_{\mathrm{UT}}^{\sin (\phi_S)}$ $+\sqrt{2\epsilon (1+\epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)}$

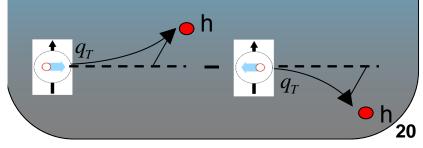
+
$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi_S) F_{LT}^{\cos(\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(2\phi - \phi_S) F_{LT}^{\cos(2\phi - \phi_S)} \right]$$

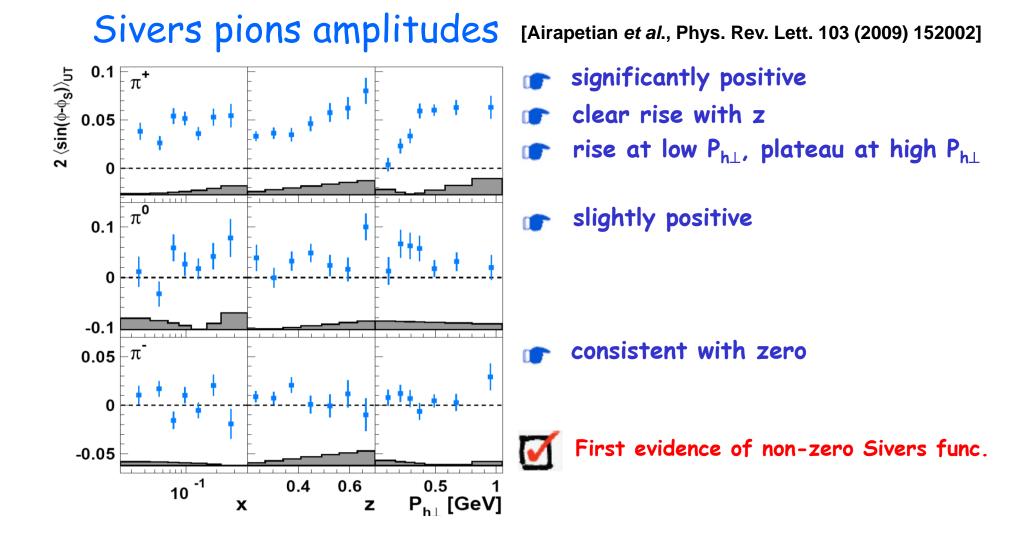
		quark		
		U	L	Т
n u	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
C	L		<i>g</i> ₁ 🐌 - 🛞	h_{1L}^{\perp} $\textcircled{\baselinetwidth{\circ}}$ – $\textcircled{\baselinetwidth{\circ}}$
e O n	т	f_{1T}^{\perp} ()	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet \bigcirc \bullet$

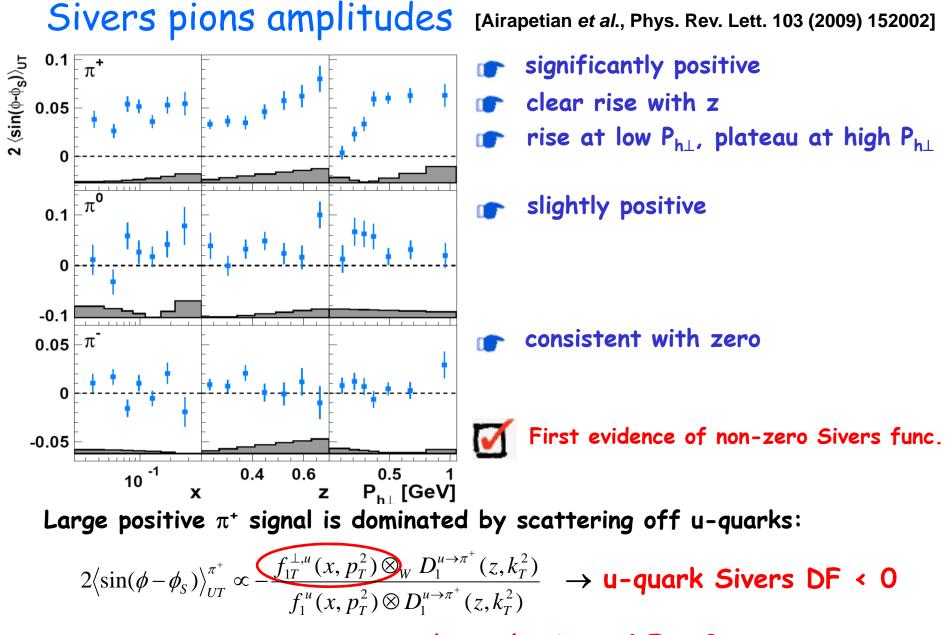
<u>Sivers effect</u>

$$\propto f_{1T}^{\perp}(x, p_T^2) \otimes D_1(z, k_T^2)$$

- correlation between parton transverse momentum and nucleon transverse polarization
- requires orbital angular momentum

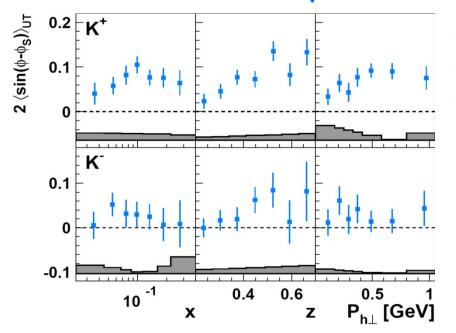






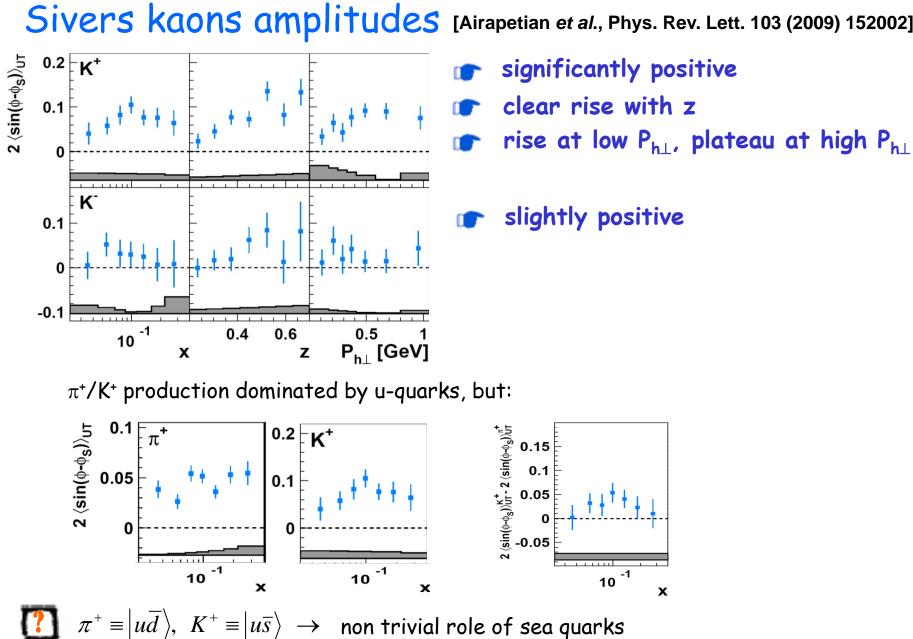
null signal for π^- indicates that d-quark Sivers DF > 0 (cancellation) confirmed by phenomenological fits (Torino group) and several theoretical predictions!

Sivers kaons amplitudes [Airapetian et al., Phys. Rev. Lett. 103 (2009) 152002]



- significantly positive
- 🖝 clear rise with z
- $m{r}$ rise at low $P_{h\perp}$, plateau at high $P_{h\perp}$

slightly positive



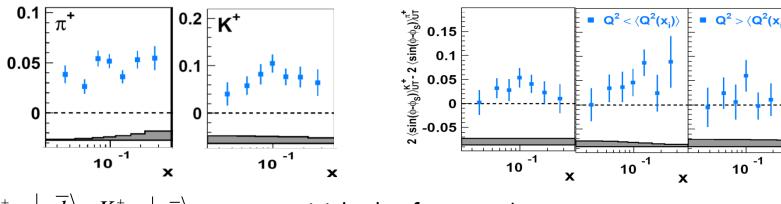
Sivers kaons amplitudes [Airapetian et al., Phys. Rev. Lett. 103 (2009) 152002]

24

х

impact of different k_T dependence of FFs in the convolution integral \bigotimes_W

Sivers kaons amplitudes [Airapetian et al., Phys. Rev. Lett. 103 (2009) 152002] 0.2 K⁺ $2 \left< \sin(\phi - \phi_S) \right>_{UT}$ significantly positive clear rise with z 0.1 rise at low $P_{h\perp}$, plateau at high $P_{h\perp}$ 0 K slightly positive 0.1 each x-bin divided into two Q² bins -0.1 only in low-Q² region significant 10 -1 0.5 1 P_{h⊥} [GeV] 0.6 0.4 (90% C.L.) deviation is observed х Ζ π^+/K^+ production dominated by u-quarks, but: Higher-twist contrib. for Kaons 0.1 2 ⟨sin(∳-∲_S)⟩_{UT} 0.2 K⁺ $Q^2 < \langle Q^2(x_i) \rangle$ $Q^2 > \langle Q^2(x_i) \rangle$ 0.05 0.1



 $\pi^+ \equiv |u\overline{d}\rangle, K^+ \equiv |u\overline{s}\rangle \rightarrow \text{ non trivial role of sea quarks}$

impact of different k_T dependence of FFs in the convolution integral \bigotimes_W

х

The Collins effect

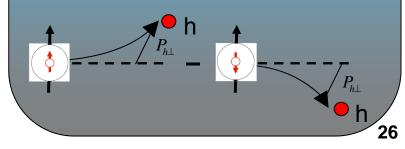
 $\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$ $F_{\rm UU,T} + \epsilon F_{\rm UU,L}$ $+\sqrt{2\epsilon \left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right]$ + $\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin(\phi) F_{LU}^{\sin(\phi)} \right]$ + $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)} \right]$ + $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$ + S_T $\left[\sin (\phi - \phi_S) \left(F_{\text{UT},\text{T}}^{\sin (\phi - \phi_S)} + \epsilon F_{\text{UT},\text{L}}^{\sin (\phi - \phi_S)} \right) \right]$ + $\epsilon \sin (\phi + \phi_S) F_{\text{UT}}^{\sin (\phi + \phi_S)} + \epsilon \sin (3\phi - \phi_S) F_{\text{UT}}^{\sin (3\phi - \phi_S)} + \sqrt{2\epsilon (1 + \epsilon) \sin (\phi_S) F_{\text{UT}}^{\sin (\phi_S)}} \right]$ $+\sqrt{2\epsilon (1+\epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)}$ + $S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos{(\phi - \phi_S)} F_{\text{LT}}^{\cos{(\phi - \phi_S)}} \right]$ $+\sqrt{2\epsilon (1-\epsilon)}\cos{(\phi_S)}F_{\mathrm{LT}}^{\cos{(\phi_S)}}$ $+\sqrt{2\epsilon(1-\epsilon)}\cos(2\phi-\phi_S)F_{\mathrm{LT}}^{\cos(2\phi-\phi_S)}$

		quark			
		U	L	Т	
n u	U	f_1 \bigcirc		h_1^{\perp} (*) - ()	
C I e O	L		g_1) -)	h_{1L}^{\perp} $\textcircled{\bullet}$ - $\textcircled{\bullet}$	
	т	f_{1T}^{\perp} - () () +	g_{1T}^{\perp} · · · · · · · · · · · · · · · · · · ·	$h_1 - \bullet \bullet \bullet$	
n				h_{1T}^+	

<u>Collins effect</u>

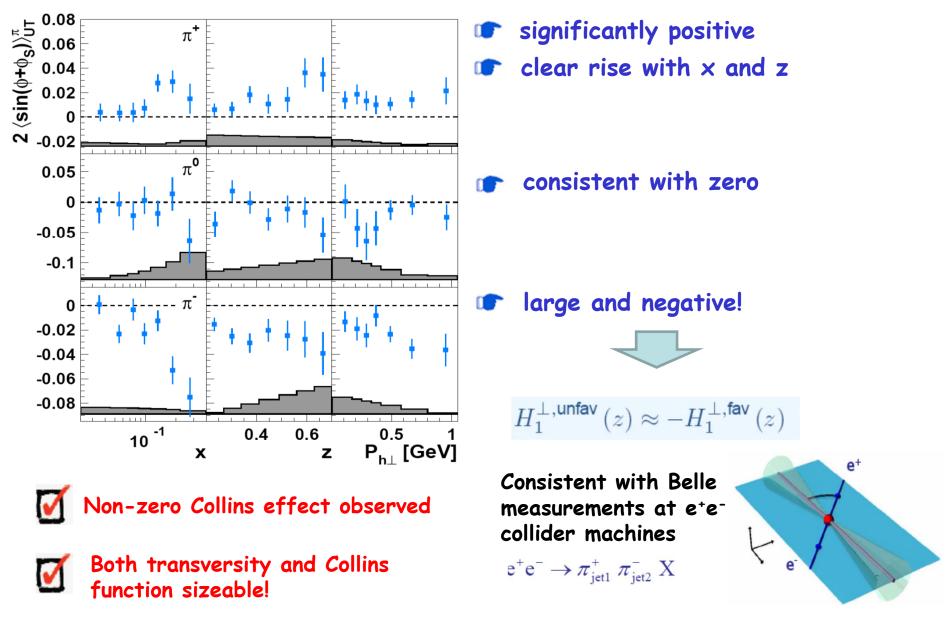
•
$$\propto h_1(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$$

 correlation between parton transverse polarization in a transversely polarized nucleon and transverse momentum of the produced hadron

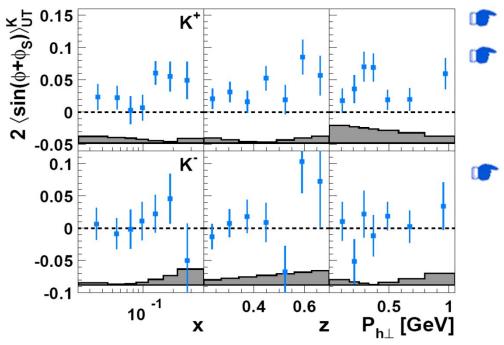


Collins pions amplitudes

[Airapetian et al., Phys. Lett. B 693 (2010) 11-16]



Collins kaons amplitudes [Airapetian et al., Phys. Lett. B 693 (2010) 11-16]



- significantly positive
 - clear rise with x and z

consistent with zero

Non-zero Collins effect observed

The "pretzelosity"

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2} \, y^{2}}{xyQ^{2} \, 2 \, (1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\mathrm{UU},\mathrm{T}} + \epsilon F_{\mathrm{UU},\mathrm{L}} \\ + \sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\mathrm{UU}}^{\cos (\phi)} + \epsilon \cos (2\phi) F_{\mathrm{UU}}^{\cos (2\phi)} \end{bmatrix} \right.$$

$$\left. + \lambda_{l} \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\mathrm{LU}}^{\sin (\phi)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{\mathrm{LL}} + \sqrt{2\epsilon (1-\epsilon)} \cos (\phi) F_{\mathrm{LL}}^{\cos (\phi)} \right]$$

$$+ \epsilon \sin (\phi - \phi_{S}) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin (\phi - \phi_{S})} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin (\phi - \phi_{S})} \right)$$

$$+ \epsilon \sin (\phi + \phi_{S}) F_{\mathrm{UT}}^{\sin (\phi + \phi_{S})} + \left[\sin (3\phi - \phi_{S}) F_{\mathrm{UT}}^{\sin (3\phi - \phi_{S})} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} \cos (\phi - \phi_{S}) F_{\mathrm{UT}}^{\cos (\phi - \phi_{S})} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} \cos (\phi - \phi_{S}) F_{\mathrm{LT}}^{\cos (\phi - \phi_{S})} \right]$$

		quark			
		U	L	Т	
n u	U	f_1 \bigcirc		h_1^{\perp} (*) - ()	
C	L		g_1 (\odot) - (\odot)	h_{1L}^{\perp} · · · ·	
e o	т	$f_{1T}^{\perp} - () \rightarrow () \rightarrow$		h1	
n	Ĺ			h_{1T}^{\perp}	

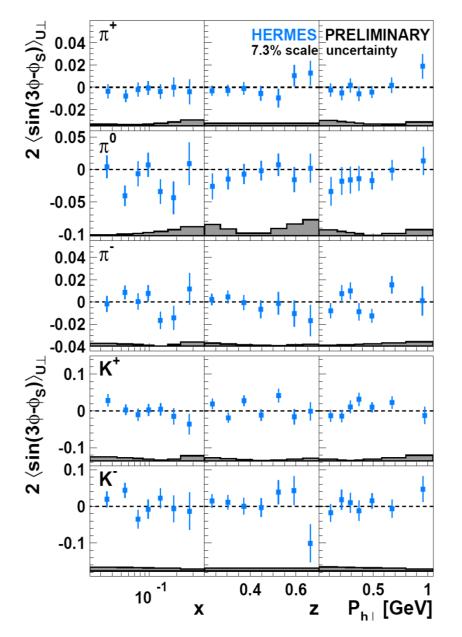
pretzelosity

$$\propto h_{1T}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$$

 \bullet characterizes the $p_{\rm T}$ dependence of the transverse quark polarization in a transversely polarized nucleon.

• can be linked to the nonspherical shape of the nucleon resulting from substantial quark orbital angular momentum

The sin($3\phi-\phi_{S}$) Fourier component



All amplitudes consistent with zero

...suppressed by two powers of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes

<u>New results</u> from A_{LT} DSAs

The worm-gear g_{1T}^{\perp}

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}2(1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{UU,T} + \epsilon F_{UU,L} \\ + \sqrt{2\epsilon(1+\epsilon)}\cos(\phi)F_{UU}^{\cos(\phi)} + \epsilon\cos(2\phi)F_{UU}^{\cos(2\phi)} \end{bmatrix} + \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi)F_{LU}^{\sin(\phi)} \right] \right\}$$

$$+ S_{L} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi)F_{UL}^{\sin(\phi)} + \epsilon\sin(2\phi)F_{UL}^{\sin(2\phi)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{LL} + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi)F_{LL}^{\cos(\phi)} \right]$$

$$+ S_{T} \left[\sin(\phi - \phi_{S}) \left(F_{UT,T}^{\sin(\phi - \phi_{S})} + \epsilon F_{UT,L}^{\sin(\phi - \phi_{S})} \right) \right]$$

$$+ \epsilon\sin(\phi + \phi_{S})F_{UT}^{\sin(\phi + \phi_{S})} + \epsilon\sin(3\phi - \phi_{S})F_{UT}^{\sin(3\phi - \phi_{S})} + \sqrt{2\epsilon(1+\epsilon)}\sin(\phi_{S})F_{UT}^{\sin(\phi - \phi_{S})} \right]$$

+
$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right]$$

		quark		
		U	L	Т
n u c l e o n	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
	L		g_1 (\odot) - (\odot)	h_{1L}^{\perp} $\textcircled{\baselinetwidth}$ – $\textcircled{\baselinetwidth}$
	т	f_{1T}^{\perp} (8)+	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet \bigcirc \bullet$

-Worm-gear

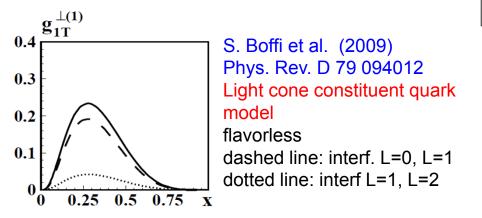
$$\propto g_{1T}^{\perp}(x,p_T^2) \otimes D_1(z,k_T^2)$$

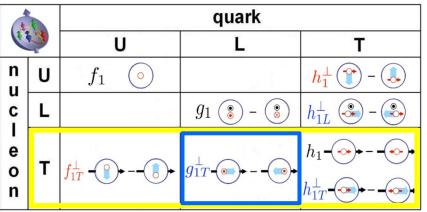
· describes the probability to find longitudinally polarized quarks in a transversely polarized nucleon $(\rightarrow$ "trans-helicity")

 accessible in LT DSAs through the leading-twist $\cos(\phi - \phi_S)$ Fourier component

The worm-gear g_{1T}^{\perp}

- The only TMD that is both chiral-even and naïve-T-even
- requires interference between wave funct. components that differ by 1 unit of OAM



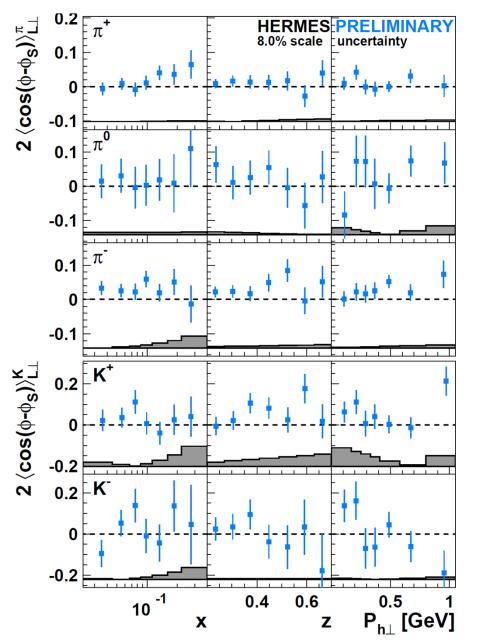


 \Rightarrow related to quark orbital motion inside nucleons

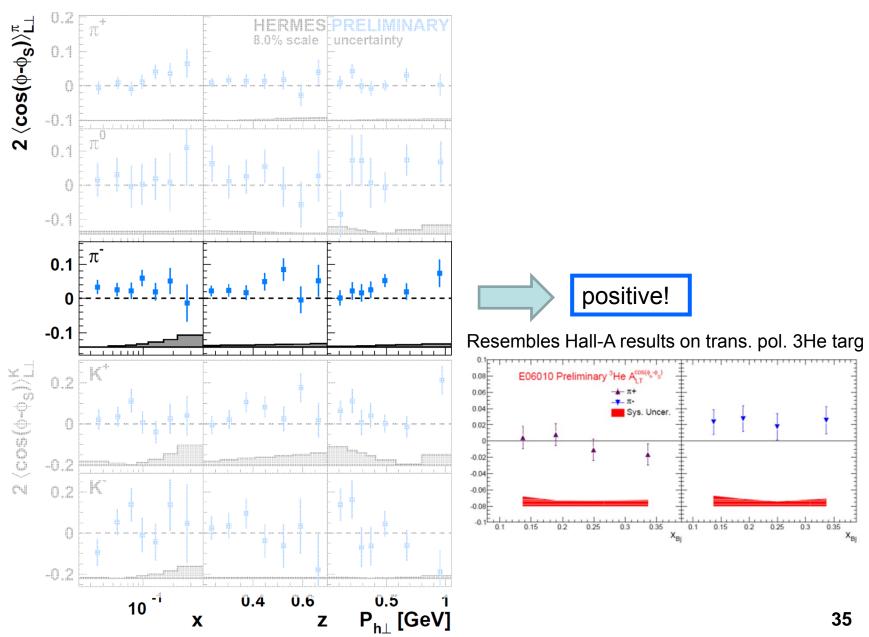
- > Many models support simple relations among g_{1T}^{\perp} and other TMDs:
- $g_{1T}^q = -h_{1L}^{\perp q}$ (also supported by Lattice QCD and first data)

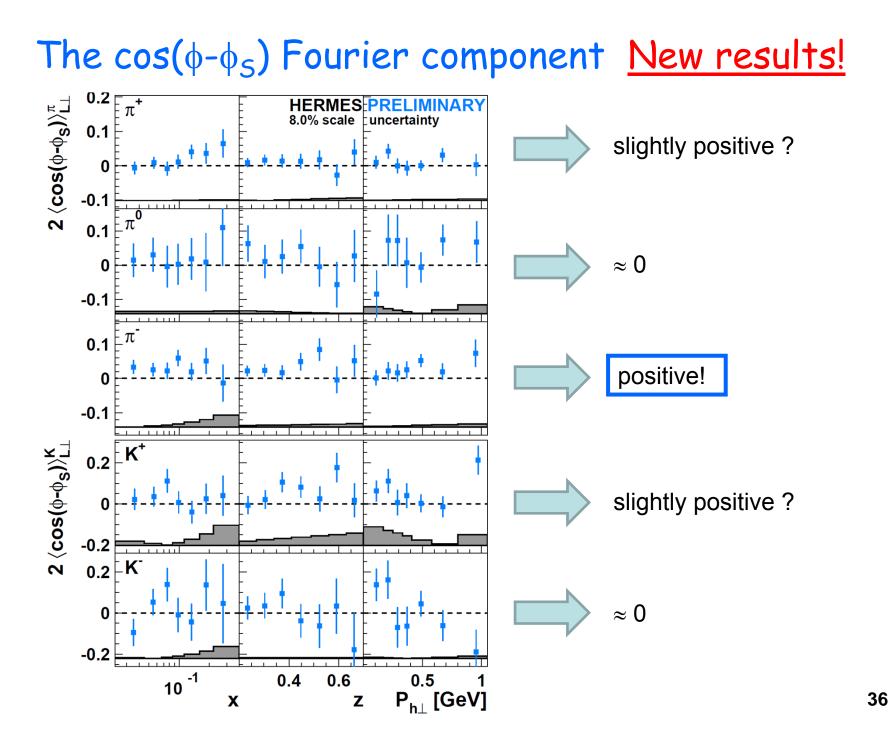
•
$$g_{1T}^{q(1)}(x) \overset{WW-type}{\approx} x \int_{x}^{1} \frac{dy}{y} g_{1}^{q}(y)$$
 (Wandzura-Wilczek appr.

The $cos(\phi-\phi_S)$ Fourier component <u>New results!</u>

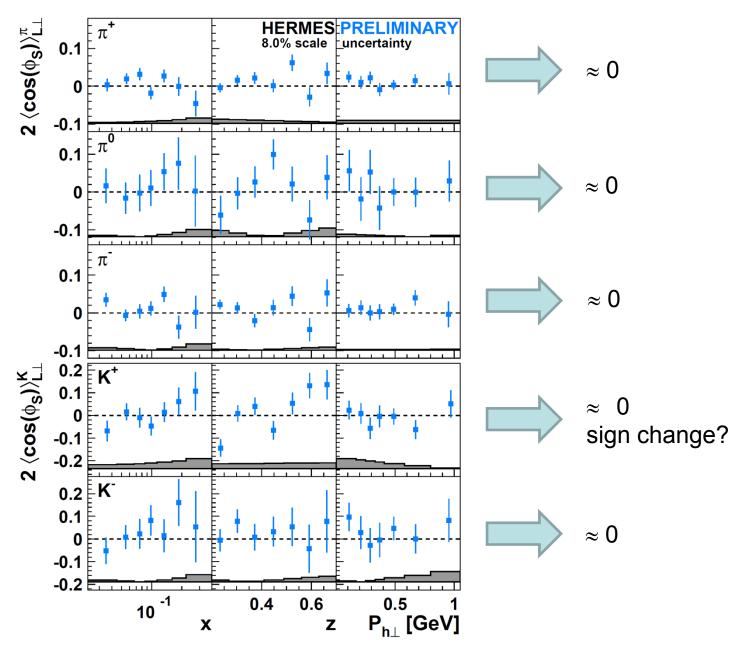


The $cos(\phi-\phi_5)$ Fourier component <u>New results!</u>

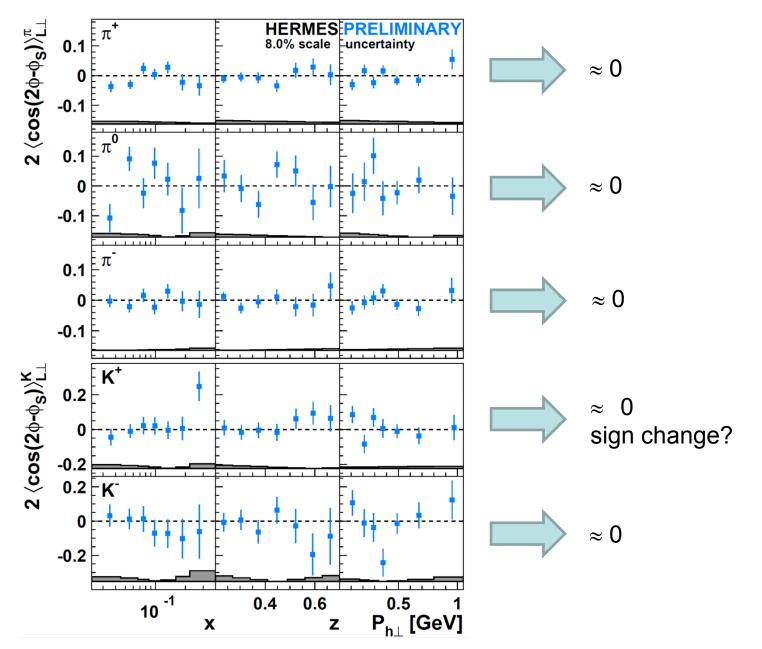




The $cos(\phi_S)$ Fourier component <u>New results!</u>



The $cos(2\phi-\phi_5)$ Fourier component <u>New results!</u>



Conclusions

The existence of an intrinsic **quark transverse motion** gives origin to azimuthal asymmetries in the hadron production direction in SIDIS

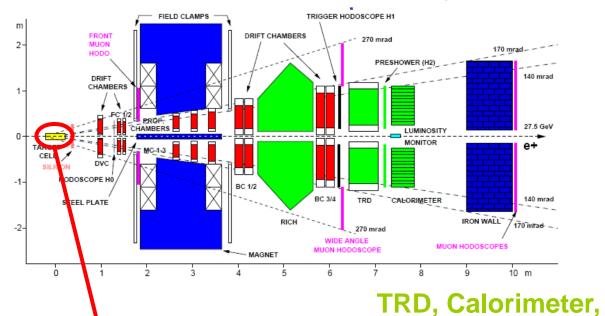
- significant Collins amplitudes observed for charged pions and K⁺
- → preliminary results enabled first extraction of transversity and Collins FF (by Torino group)
- significant Sivers amplitudes observed for π^+ and K⁺
- \rightarrow clear evidence of non-zero T-odd Sivers function
- \rightarrow (indirect) evidence for non-zero quark orbital angular momentum
- \rightarrow hint of non-trivial role of sea quarks and of higher-twist contrib. for positive kaons

• first results on A_{LT} SSAs sensitive to worm-gear g_{1T}^{\perp}

 \rightarrow non-zero amplitudes observed for the $\cos(\phi - \phi_s)$ Fourier component for π^- (π^+, K^+)

Back-up slides

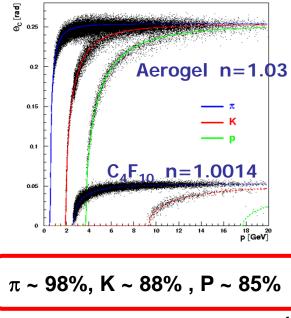
The HERMES experiment at HERA



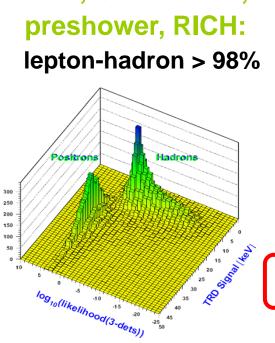
Cherenkov Photons C₄F₁₀ Aerogel Mirror

Photon Detector

hadron separation



BP Target Chamber AB3 TGA proton beam line



Accessing the polarized cross section through SSAs Full HERMES transverse data (02-05 data with $\langle P_T \rangle \approx 73\%$)

The relevant Fourier components were extracted through a ML fit of the hadron yields for opposite target transverse spin states, alternately binned in x, z, and $P_{h\perp}$, but unbinned in ϕ and ϕ_S (\rightarrow acceptance effects on azimuthal angles cancel out)

 $Q^{2} > 1 \,\text{GeV}^{2}$ $W^{2} > 10 \,\text{GeV}^{2}$ 0.023 < x < 0.4 y < 0.95 0.2 < z < 0.7 $2 \,\text{GeV} < P_{h} < 15 \,\text{GeV}$

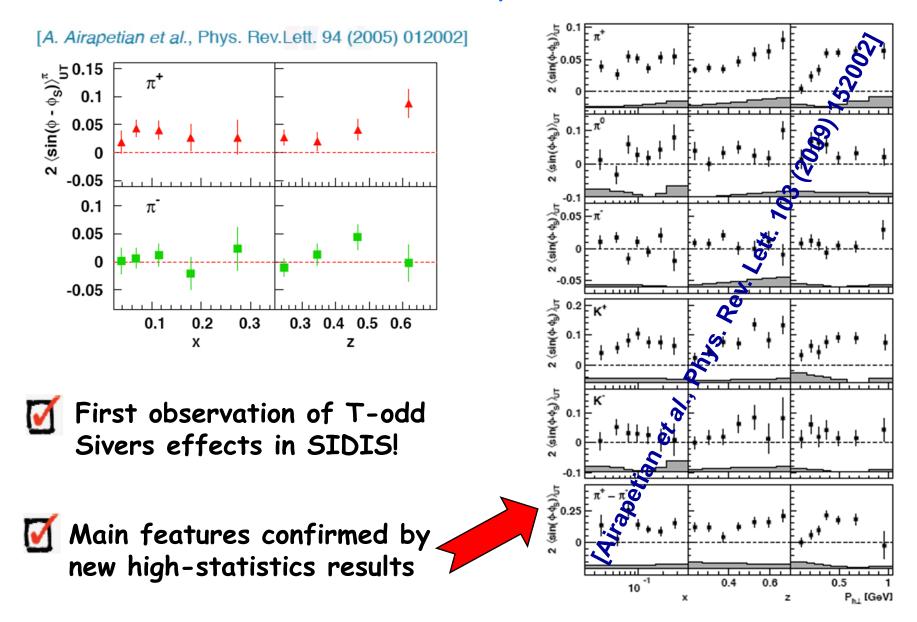
$$L = \prod_{i}^{N^{h}} P_{i} \left(\phi_{i}, \phi_{S,i}, P_{T,i}; 2 \langle \sin(m\phi \pm n\phi_{S}) \rangle_{UT}^{h} \right) = \prod_{i}^{N^{h}} \left[1 + P_{T,i} \left(2 \langle \sin(m\phi \pm n\phi_{S}) \rangle_{UT}^{h} \sin(m\phi_{i} \pm n\phi_{S,i}) \right) \right]$$
probability of i_{th} SIDIS event
This is equivalent to
perform a Fourier
decomposition of
the cross section
asymmetry in the
limit of vanishingly
small ϕ and ϕ_{S} bins
$$A_{UT}^{h} (\phi, \phi_{S}) = \frac{1}{|P_{T}|} \frac{d\sigma^{h}(\phi, \phi_{S}) - d\sigma^{h}(\phi, \phi_{S} + \pi)}{d\sigma^{h}(\phi, \phi_{S}) + d\sigma^{h}(\phi, \phi_{S} + \pi)}$$

$$\sim \sin(\phi + \phi_{S}) \sum_{q} e_{q}^{2} \mathcal{I} \left[\frac{k_{T} \hat{P}_{h\perp}}{M_{h}} h_{1}^{q}(x, p_{T}^{2}) H_{1}^{\perp,q}(z, k_{T}^{2}) \right]$$

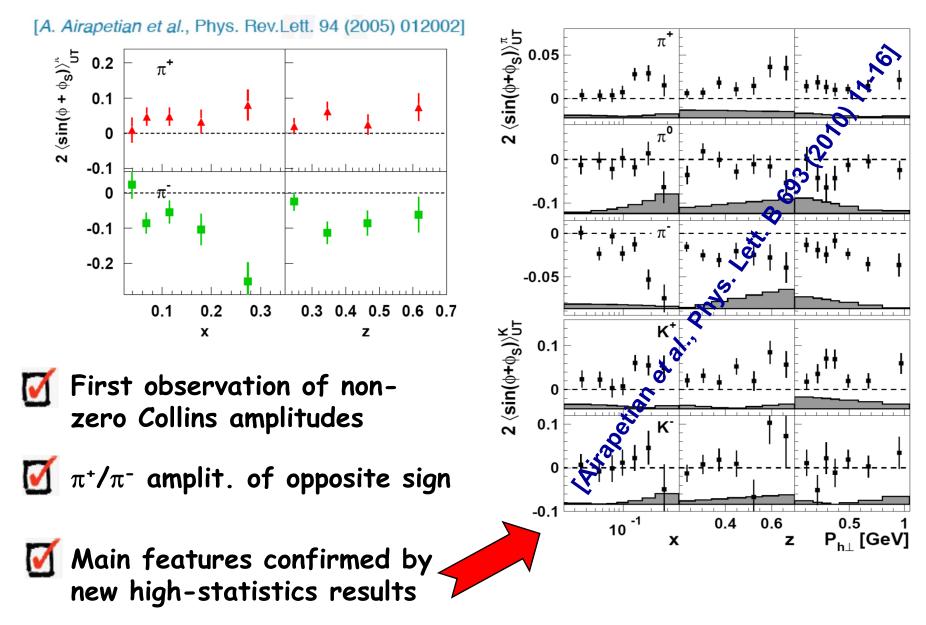
$$+ \sin(\phi - \phi_{S}) \sum_{q} e_{q}^{2} \mathcal{I} \left[\frac{p_{T} \hat{P}_{h\perp}}{M} f_{1T}^{\perp,q}(x, p_{T}^{2}) D_{1}^{q}(z, k_{T}^{2}) \right] + \dots$$

I [...]: convolution integral over initial (p_T) and final (k_T) quark transverse momenta

Sivers amplitudes

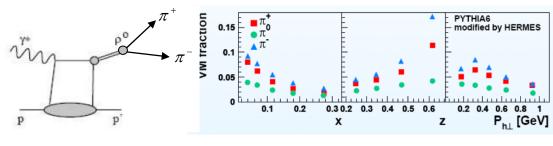


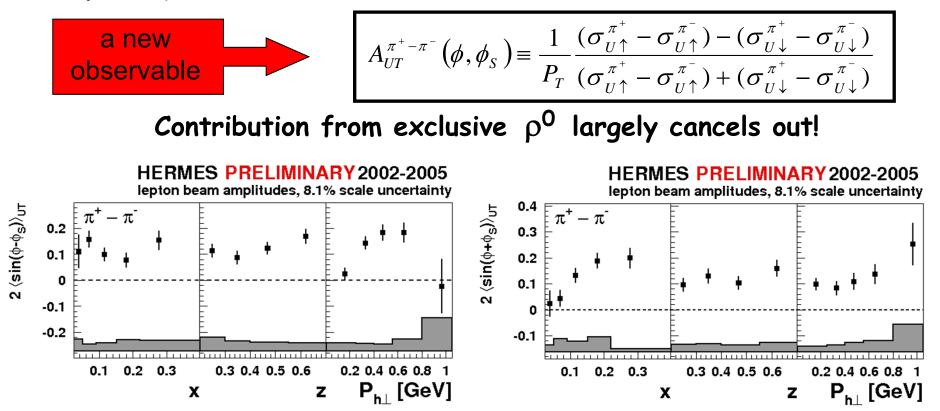
Collins amplitudes



The pion-difference asymmetry

Contribution by decay of exclusively produced vector mesons (ρ^{0}, ω, ϕ) is not negligible (6-7% for pions and 2-3% for kaons), though substatially limited by the requirement z<0.7.

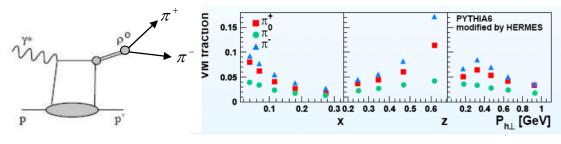


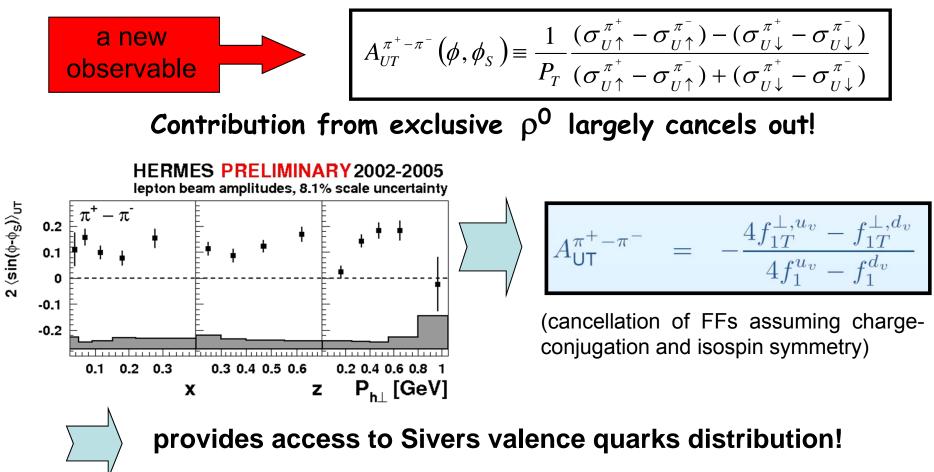


- significantly positive Sivers and Collins amplitudes are obtained
- measured amplitudes are not generated by exclusive VM contribution 45

The pion-difference asymmetry

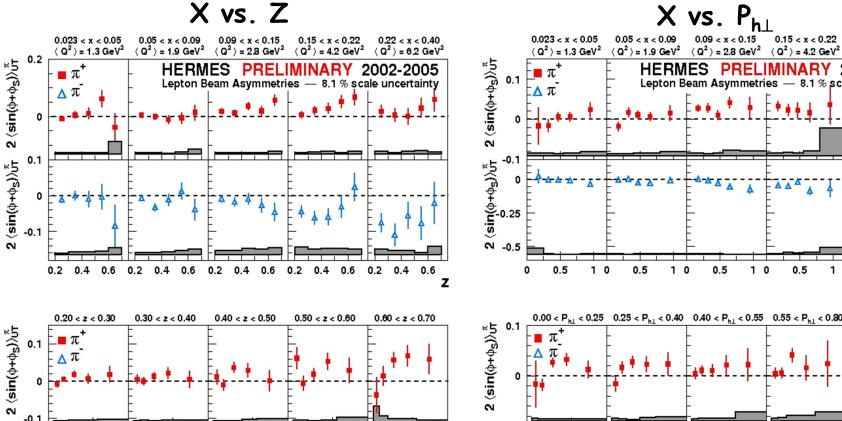
Contribution by decay of exclusively produced vector mesons (ρ^{0}, ω, ϕ) is not negligible (6-7% for pions and 2-3% for kaons), though substatially limited by the requirement z<0.7.





2-D Collins pions amplitudes

Kinematic dependencies often don't factorize \rightarrow correlations among variables bin in as many independent variables as possibles (multidim. analysis)



٥

-0.1

0

-0.1

-0.2

0.2

n

0.2

0

0.2

n

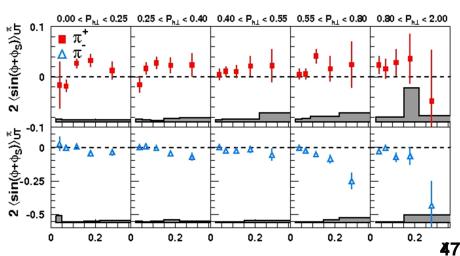
0.2

0

0.2

х

 $2 (sin(\phi+\phi_S))_{UT}^{\pi}$



0.15 < x < 0.22

0.5

10

0.22 < x < 0.40

 $\langle Q^2 \rangle = 6.2 \text{ GeV}^2$

2002-2005

4 4

0.5

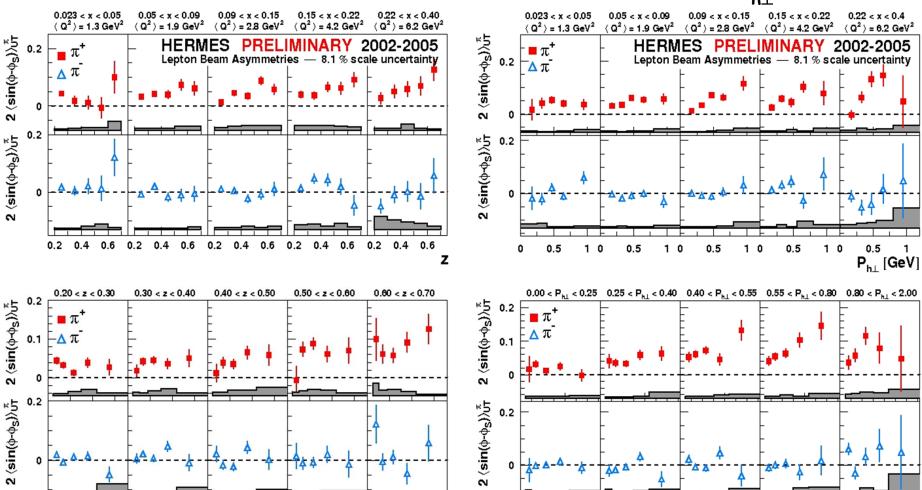
 $P_{h\perp}$ [GeV]

1

8.1 % scale uncertainty

2-D Sivers pions amplitudes

Kinematic dependencies often don't factorize \rightarrow correlations among variables bin in as many independent variables as possibles (multidim. analysis)



X vs. Z

0.2

0

0

0.2

n

0.2

0.2

n

0.2

х

0

0.2

0

0.2

٥

0.2

٥

0.2

0

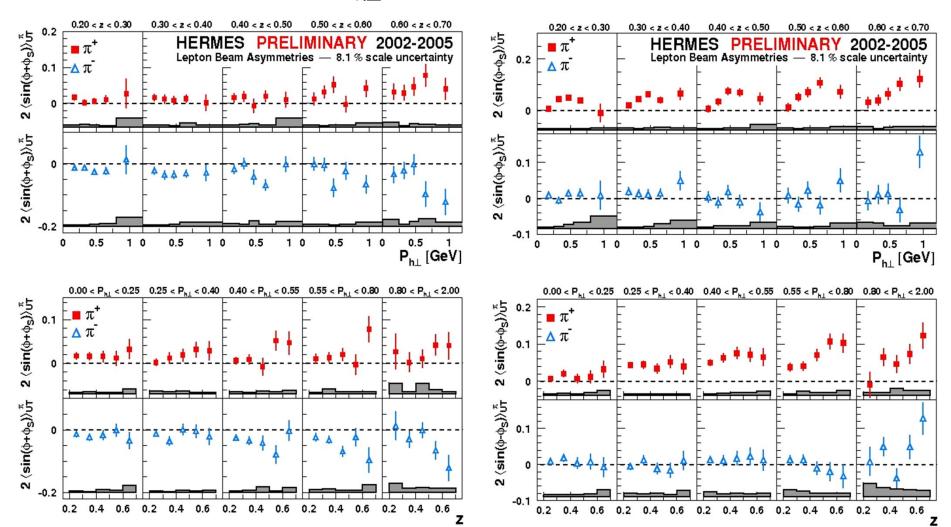
X vs. $P_{h\perp}$

0.2

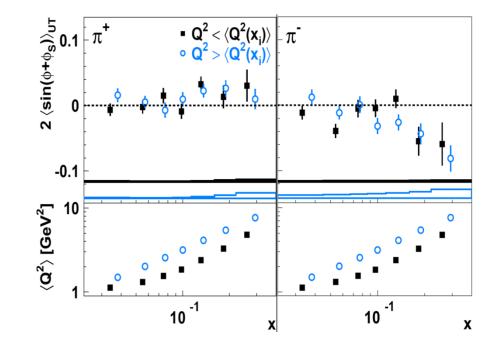
2-D moments for π^{\pm} : Z VS. $P_{h\perp}$

Collins: Z vs. $P_{h\perp}$

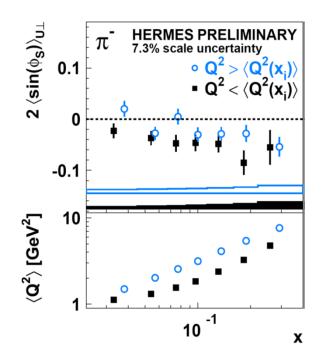
Sivers: Z vs. Ph1



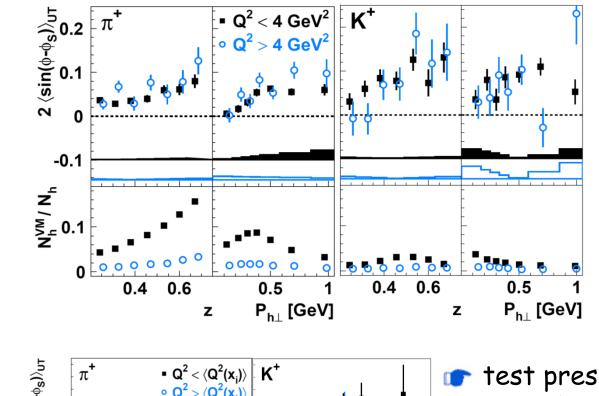
Collins amplitudes: twist-4 contrib?



$\frac{sin(\phi_{S})}{Q^{2} dependence for π^{-}}$

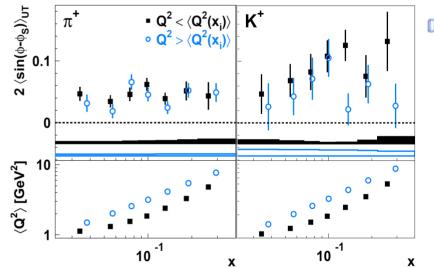


Siver amplitudes: additional studies



No systematic shifts observed between high and low Q² amplitudes for both π⁺ and K⁺

No indication of important contributions from exclusive VM



test presence of 1/Q²-suppressed contributions

separate each x-bin in two Q^2 bins

hint of higher-twist contributions to the K⁺ amplitude

Probing g_{1T}^{\perp} through Double Spin Asymmetries

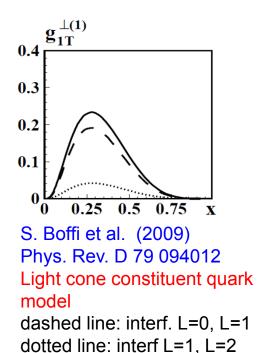
$$\begin{split} F_{LT}^{\cos(\phi_h - \phi_S)} &= \mathcal{C} \left[\frac{\hat{h} \cdot p_T}{M} g_{1T} D_1 \right] \\ F_{LT}^{\cos(\phi_S)} &= \frac{2M}{Q} \, \mathcal{C} \left\{ - \left(x g_T D_1 + \frac{M_h}{M} h_1 \frac{\tilde{E}}{z} \right) \right. \\ &+ \frac{k_T \cdot p_T}{2M M_h} \left[\left(x e_T H_1^{\perp} - \frac{M_h g_{1T}}{M} \frac{\tilde{D}^{\perp}}{z} \right) + \left(x e_T^{\perp} H_1^{\perp} + \frac{M_h}{M} f_{1T}^{\perp} \frac{\tilde{G}^{\perp}}{z} \right) \right] \right\} \\ F_{LT}^{\cos(2\phi_h - \phi_S)} &= \frac{2M}{Q} \, \mathcal{C} \left\{ - \frac{2 \left(\hat{h} \cdot p_T \right)^2 - p_T^2}{2M^2} \left(x g_T^{\perp} D_1 + \frac{M_h}{M} h_{1T}^{\perp} \frac{\tilde{E}}{z} \right) \right. \\ &+ \frac{2 \left(\hat{h} \cdot k_T \right) \left(\hat{h} \cdot p_T \right) - k_T \cdot p_T}{2M M_h} \left[\left(x e_T H_1^{\perp} - \frac{M_h g_{1T}}{M} \frac{\tilde{D}^{\perp}}{z} \right) \right. \\ &- \left(x e_T^{\perp} H_1^{\perp} + \frac{M_h}{M} f_{1T}^{\perp} \frac{\tilde{G}^{\perp}}{z} \right) \right] \right] \end{split}$$

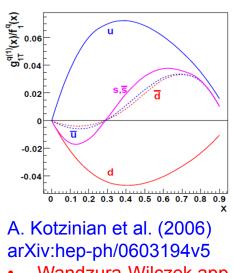
Probing g_{1T}^{\perp} through Double Spin Asymmetries

$$\begin{split} F_{LT}^{\cos(\phi_h-\phi_S)} &= \mathcal{C}\left[\frac{\hat{h}\cdot p_T}{M}\mathcal{G}_{1T}\mathcal{D}_1\right] \\ F_{LT}^{\cos\phi_S} &= \frac{2M}{Q} \mathcal{C}\left\{-\left(xg_T D_1 + \frac{M_h}{M}h_1\frac{\tilde{E}}{z}\right) \\ &+ \frac{k_T \cdot p_T}{2MM_h}\left[\left(xe_T H_1^{\perp} - \frac{M_h}{M}\mathcal{G}_{1T}\frac{\tilde{D}^{\perp}}{z}\right) + \left(xe_T^{\perp}H_1^{\perp} + \frac{M_h}{M}f_{1T}^{\perp}\frac{\tilde{G}^{\perp}}{z}\right)\right]\right\} \\ F_{LT}^{\cos(2\phi_h-\phi_S)} &= \frac{2M}{Q} \mathcal{C}\left\{-\frac{2\left(\hat{h}\cdot p_T\right)^2 - p_T^2}{2M^2}\left(xg_T^{\perp}D_1 + \frac{M_h}{M}h_{1T}^{\perp}\frac{\tilde{E}}{z}\right) \\ &+ \frac{2\left(\hat{h}\cdot k_T\right)\left(\hat{h}\cdot p_T\right) - k_T \cdot p_T}{2MM_h}\left[\left(xe_T H_1^{\perp} - \frac{M_h}{M}\mathcal{G}_{1T}\frac{\tilde{D}^{\perp}}{z}\right)\right] \\ &- \left(xe_T^{\perp}H_1^{\perp} + \frac{M_h}{M}f_{1T}^{\perp}\frac{\tilde{G}^{\perp}}{z}\right)\right]\right\} \end{split}$$

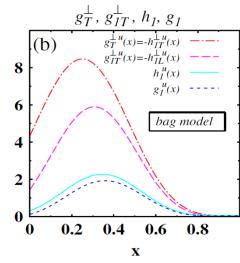
The simplest way to probe worm-gear g_{1T}^{\perp} is through the $\cos(\phi - \phi_s)$ Fourier component

$$2\left\langle\cos\left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{LT}}^{h} \equiv \sqrt{1-\varepsilon^{2}}\frac{F_{LT}^{\cos\left(\phi_{h}-\phi_{S}\right)}}{F_{UU,T}} = \frac{\mathcal{C}\left[-\frac{\hat{\mathbf{h}}\cdot\mathbf{p}_{T}}{M}g_{1\mathrm{T}}^{\perp,q}\left(x,\mathbf{p}_{T}^{2}\right)D_{1}^{q}\left(z,z^{2}\mathbf{k}_{T}^{2}\right)\right]}{\mathcal{C}\left[f_{1}^{q}\left(x,\mathbf{p}_{T}^{2}\right)D_{1}^{q}\left(z,z^{2}\mathbf{k}_{T}^{2}\right)\right]}$$
53

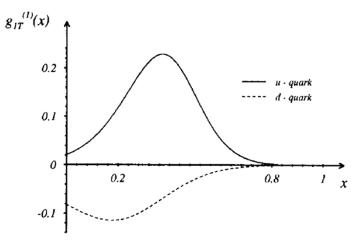




- Wandzura-Wilczek app.
- LO GRV98 (unpol. DFs)
- LO GRV2000 (pol. DFs)



R. Jakob et al. Nucl. Phys. A 626 937 (1997) Spectator model

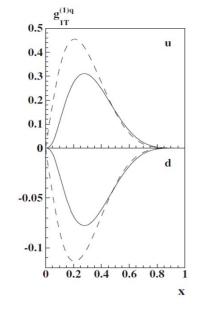


H. Avakian et al. (2010) Phys. Rev. D 81 074035 Bag model

> B. Pasquini et al. (2008) Phys. Rev. D 78 034025 Light cone constituent quark model

dashed line:

Wandzura-Wilczek app.



Model predictions for $A_{LT}^{\cos(\phi-\phi_S)}$

Proton $A_{LT}^{\cos(\phi_h - \phi_s)}$

0.4

Х

 $A_{LT}^{Cos(\phi-\phi_S)}(x)$

0.2

0.2

0.25

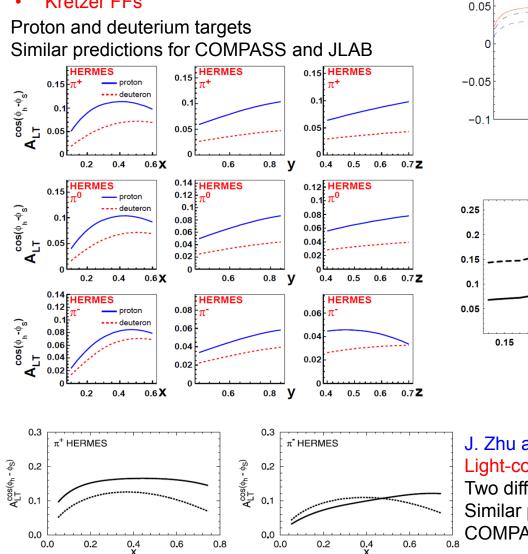
х

0.3

0.1

A. Kotzinian et al. (2006) arXiv:hep-ph/0603194v5

- Wandzura-Wilczek app. •
- LO GRV98 (unpol. DFs) .
- LO GRV2000 (pol. DFs) .
- **Kretzer FFs**



S. Boffi et al. (2009) Phys. Rev. D 79 094012 Light cone constituent quark model

A. Bacchetta et al. (2010) Eur.Phys.J. A45 373-388 diquark spectator model Pt-weighted asymmetry

J. Zhu and B0-Qiang Ma , Phys. Let. B 696 (2011) 246 Light-cone guark-diguark model

0.4

0.8

0.6

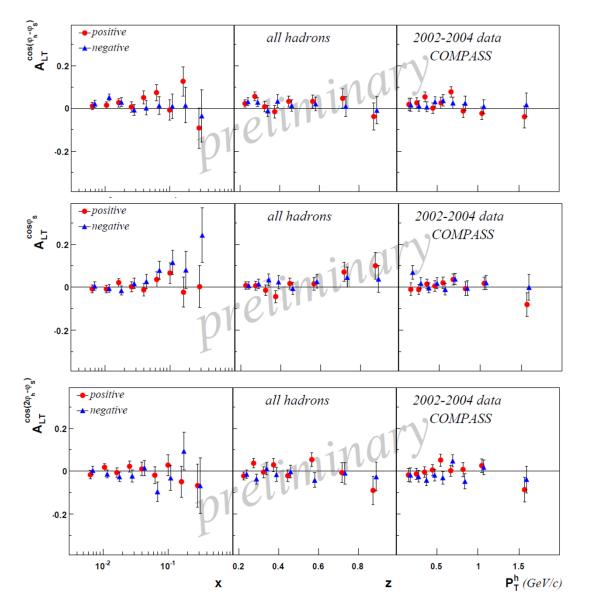
 π^{-}

 π^{\dagger}

0.35

Two different prescriprions Similar predictions for n and d targets and for COMPASS and JLAB

Experimental status



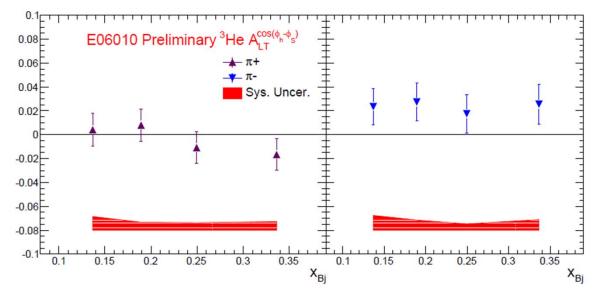
A. Kotzinian arXiv:0705.2402v1 [hep-ex]

COMPASS results on transversely pol. D target:

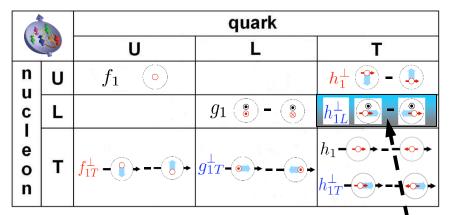
- all consistent with zero
- never published
- no results yet released on proton target

Experimental status

JLAB Neutron Transversity Collaboration preliminary results on transversely pol. 3He target (neutron target)



J. Huang, in 12th International Conference on Meson-Nucleon Physics and the Structureof the Nucleon (2010), URL



$$d\sigma = d\sigma_{UU}^0 + \cos 2\phi d\sigma_U^1$$

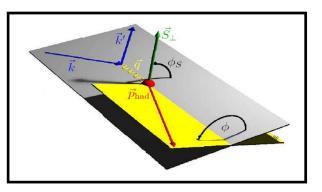
 $\sin 2\phi \, d\sigma_{UL}^4$

$$+ \mathop{\mathsf{S}}_{\mathsf{T}} \left\{ \sin(\phi - \phi_{S}) \ d\sigma_{UT}^{8} + \sin(\phi) \right\}$$

+**S**

L

$$+\frac{1}{Q}$$
$$+\lambda_{e}\left[\cos(\phi - \phi_{s}) d\sigma_{LT}^{13} + \frac{1}{Q}\right]$$

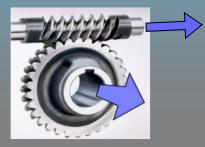


<u>Worm-gear (UL)</u> (Kotzinian-Mulders)

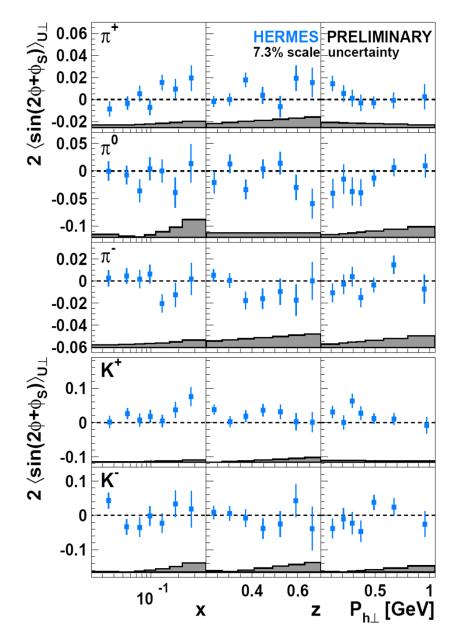
•
$$\propto h_{1L}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$$

• describes the probability to find transversely polarized quarks in a longitudinally polarized nucleon

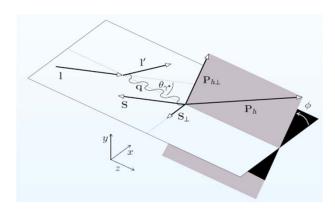
• accessible in UT measurements through sin($2\phi+\phi_S$) Fourier component



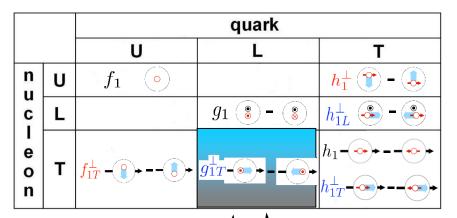
The sin($2\phi + \phi_S$) Fourier component

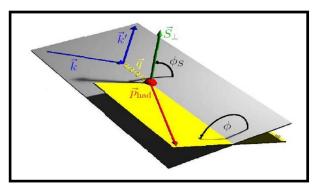


 arises solely from longitudinal (w.r.t. virtual photon direction) component of the target spin



- related to $\langle \sin(2\phi) \rangle_{UL}$ Fourier comp: $2 \langle \sin(2\phi + \phi_S) \rangle_{UT}^h \propto \frac{1}{2} \sin(\mathcal{G}_{l\gamma^*}) 2 \langle \sin(2\phi) \rangle_{UL}^h$
- sensitive to worm-gear h_{1L}^\perp
- $\boldsymbol{\cdot}$ suppressed by one power of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes
- no significant non-zero signal observed (except maybe for K+)





$$d\sigma \stackrel{\bullet}{=} d\phi^0_{UU} + \cos 2\phi \, d\sigma^1_{UU}$$

$$+ \frac{\mathsf{S}}{\mathsf{L}} \left\{ \sin 2\phi \, d\sigma_{UL}^4 + \right. \right.$$

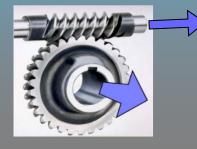
+
$$\frac{\mathsf{S}}{\mathsf{T}} \left\{ \sin(\phi - \phi_{\mathrm{S}}) d\sigma_{UT}^{8} + \sin(\phi - \phi_{\mathrm{S}}) \right\}$$

$$+\frac{1}{Q}\sin(2\phi-\phi_{S}) d\sigma_{UT}^{11} + \frac{1}{Q}\sin\phi_{S}d\sigma_{UT}^{12}$$
$$+\lambda_{e}\left[\cos(\phi-\phi_{S}) d\sigma_{LT}^{13}\right] + \frac{1}{Q}$$

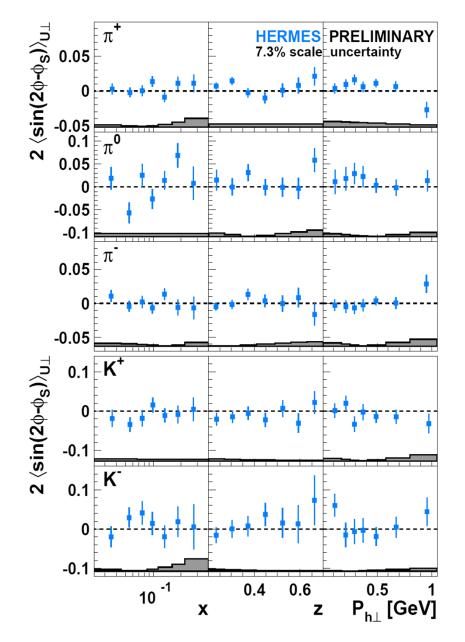
Worm-gear (LT)

•
$$\propto g_{1T}^{\perp}(x, p_T^2) \otimes D_1(z, k_T^2)$$

- describes the probability to find longitudinally polarized quarks in a transversely polarized nucleon
- accessible in UT measurements through sub-leading $sin(2\phi-\phi_S)$ Fourier comp.



The subleading-twist $sin(2\phi-\phi_S)$ Fourier component

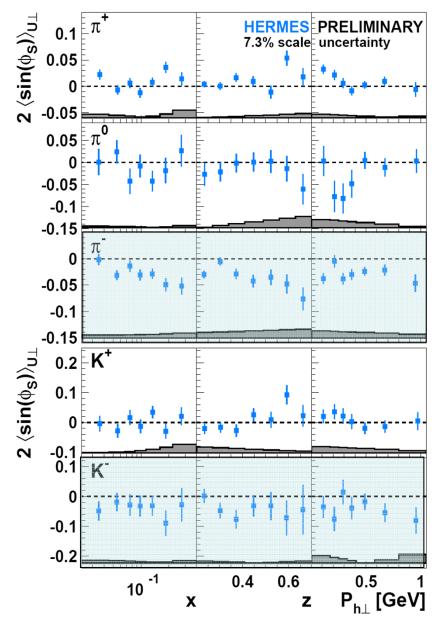


• sensitive to worm-gear g_{1T}^{\perp} , Pretzelosity and Sivers function:

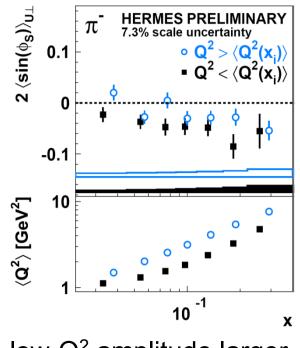
$$\begin{aligned} \propto \quad & \mathcal{W}_1(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left(\mathbf{x} \mathbf{f_T^{\perp}} \mathbf{D_1} - \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{h_{1T}^{\perp}} \frac{\tilde{\mathbf{H}}}{\mathbf{z}} \right) \\ & - \mathcal{W}_2(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left[\left(\mathbf{x} \mathbf{h_T} \mathbf{H_1^{\perp}} + \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{g_{1T}} \frac{\tilde{\mathbf{G}^{\perp}}}{\mathbf{z}} \right) \right. \\ & \left. + \left(\mathbf{x} \mathbf{h_T^{\perp}} \mathbf{H_1^{\perp}} - \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{f_{1T}^{\perp}} \frac{\tilde{\mathbf{D}^{\perp}}}{\mathbf{z}} \right) \right] \end{aligned}$$

- suppressed by one power of $\mathsf{P}_{h\perp}$ w.r.t. Collins and Sivers amplitudes
- no significant non-zero signal observed

The subleading-twist $sin(\phi_S)$ Fourier component

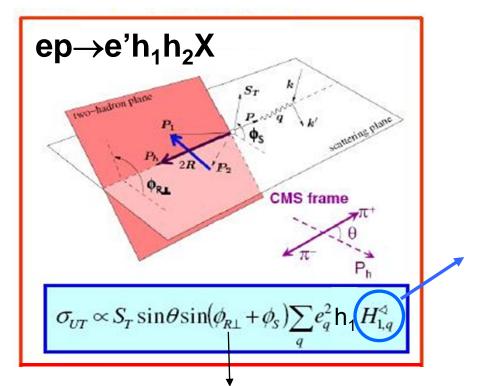


- sensitive to worm-gear g_{1T}^{\perp} , Sivers function, Transversity, etc
- significant non-zero signal observed for π^- and K⁻ !

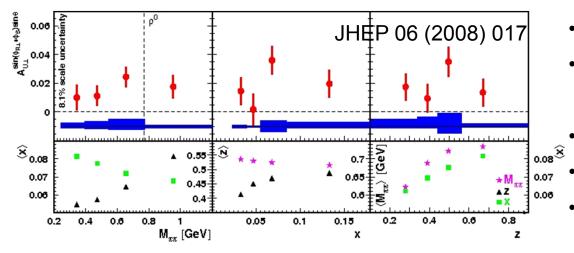


- low-Q² amplitude larger
- hint of Q² dependence for π -

An alternative access to transversity: the di-hadron SSA



azimuthal orientation of relative transv. momentum of the 2 had.



Di-hadron FF

(does not depend on quark transv. momentum)

Chiral-odd T- odd

Correlation between transverse spin of the fragmenting quark and the relative orbital angular momentum of the hadron pair.

Describes Spin-orbit correlation in fragmentation

azimuthal asymmetries in the direction of the outgoing hadron pairs.

- significantly positive amplitudes
- 1st evidence of non zero dihadron FF (can be measured at e^+e^- colliders)
- independent way to access transversity
- no convolution integral involved
- limited statistical power (v.r.t. 1 hadron)