



# Recent results on TMDs from the HERMES Experiment

Luciano L. Pappalardo

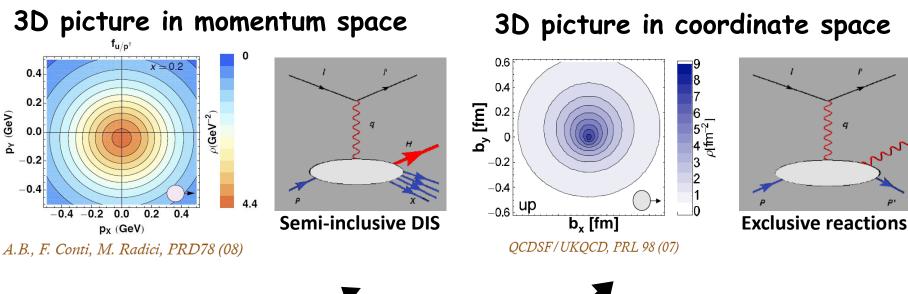
University of Ferrara

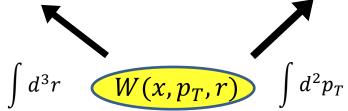
# The nucleon tomography

 $f(x, p_T)$ TMDs

py (GeV)



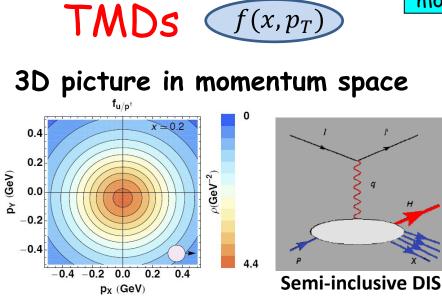




Mother Wigner function:

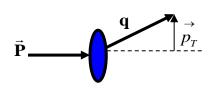
describes full phase-space distributions of partons, but not accessible experimentally

# The nucleon tomography

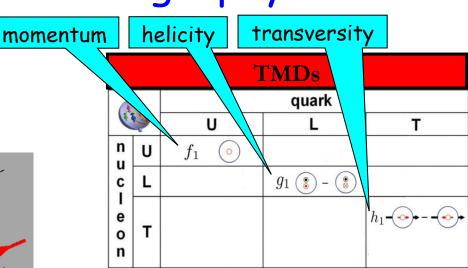


A.B., F. Conti, M. Radici, PRD78 (08)

• Depend on x and  $p_T$ 

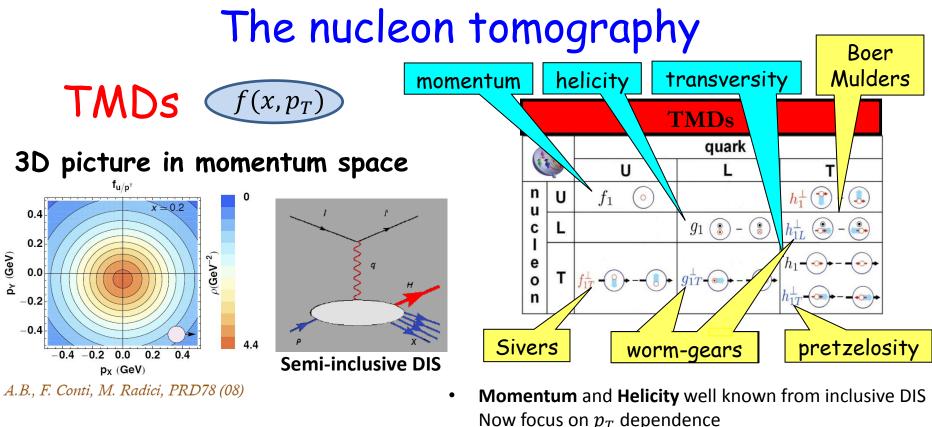


 Describe correlations between p<sub>T</sub> and quark or nucleon spin (spinorbit correlations)

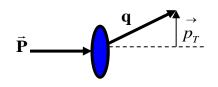


## Diagonal elements survive integration over $p_T$

- **Momentum** and **Helicity** well known from inclusive DIS Now focus on  $p_T$  dependence
- **Transversity** accessed only recently in SIDIS, still poorly known (differs from helicity due to relativistic effects)



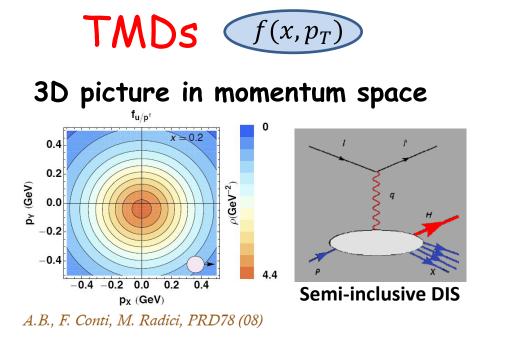
Depend on x and  $p_T$ 



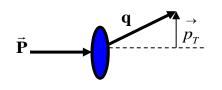
Describe correlations between  $p_T$ and quark or nucleon spin (spinorbit correlations)

- Now focus on  $p_T$  dependence **Transversity** accessed only recently in SIDIS, still poorly
- known (differs from helicity due to relativistic effects)
- **Sivers** and **BM**: T-odd  $\rightarrow$  require non-trivial (process-• dependent!) gauge-link. Recently probed in SIDIS. Non zero and strongly flavour dependent
- **w-g**  $g_{1T}$ : hint of non-zero signal. Very preliminary access.
- **w-g**  $h_{1L}$ : zero at HERMES and COMPASS, significant amplitudes at CLAS!
- **pretzelosity** consistent with zero (HERMES, COMPASS)

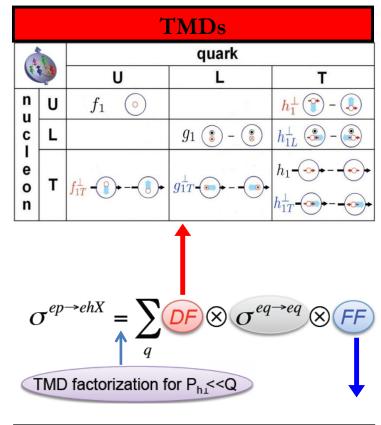
# Accessing the TMDs



• Depend on x and  $p_T$ 



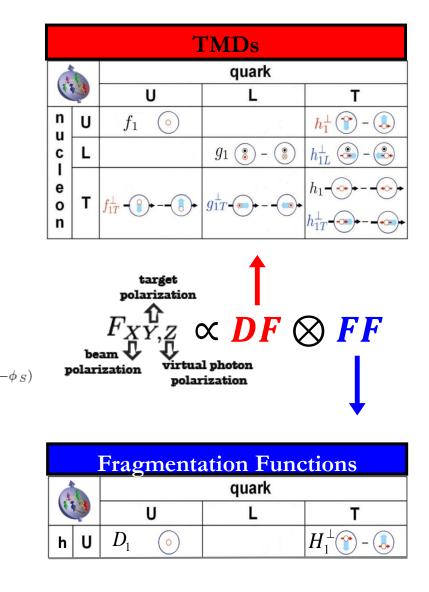
 Describe correlations between p<sub>T</sub> and quark or nucleon spin (spinorbit correlations)



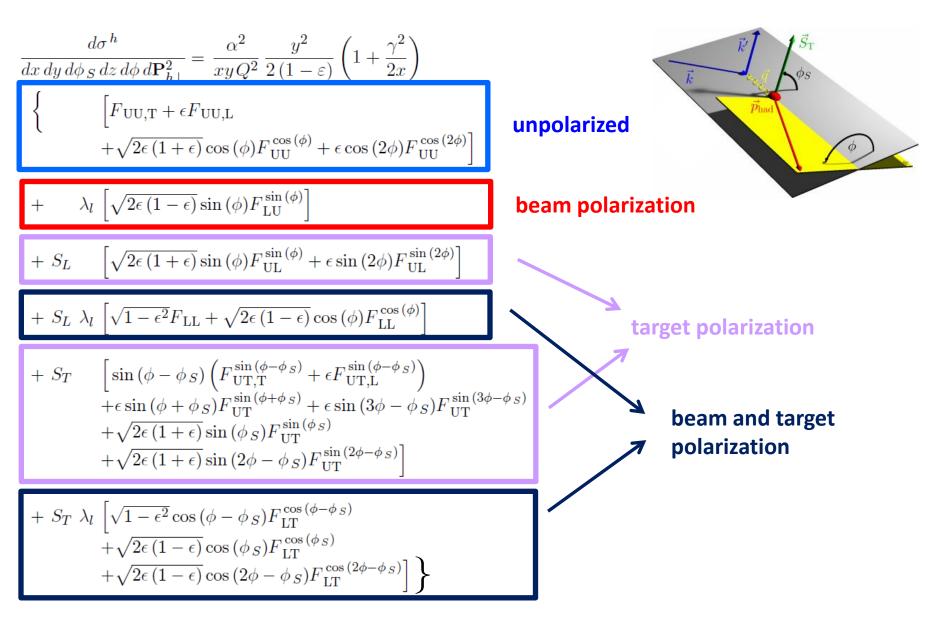
|   | Fragmentation Functions |       |            |   |                       |  |
|---|-------------------------|-------|------------|---|-----------------------|--|
|   |                         | quark |            |   |                       |  |
| 9 |                         |       | U          | L | Т                     |  |
| h | U                       | $D_1$ | $\bigcirc$ |   | $H_1^{\perp}$ ( ) - ( |  |

# The SIDIS cross-section

$$\begin{aligned} \frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^{2}}{2x}\right) \\ \left\{ \begin{array}{c} \left[F_{\mathrm{UU},\mathrm{T}}+\epsilon F_{\mathrm{UU},\mathrm{L}}\right.\\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right] \\ + &\lambda_{l} \left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right] \\ + &S_{L} \left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)}+\epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right] \\ + &S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}}+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\cos\left(\phi\right)}\right] \\ + &S_{T} \left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT},\mathrm{T}}^{\sin\left(\phi-\phi_{S}\right)}+\epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin\left(\phi-\phi_{S}\right)}\right)\right.\\ &\left.+\epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}+\epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)}\right.\\ &\left.+\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_{S}\right)}\right] \\ + &S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}\cos\left(\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)}\right.\\ &\left.+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)}\right] \\ \end{array}\right\} \end{aligned}$$

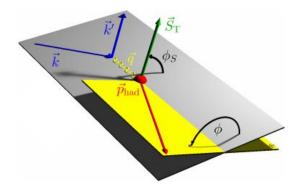


# The SIDIS cross-section



# The SIDIS cross-section

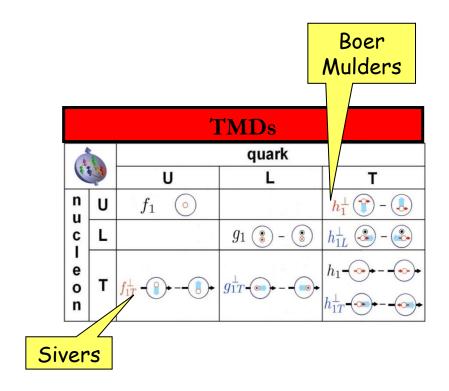
$$\begin{aligned} \frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^{2}}{2x}\right) \\ \left\{ \begin{array}{c} F_{\mathrm{UU},\mathrm{T}} + \epsilon F_{\mathrm{UU},\mathrm{L}} \\ + \sqrt{2\epsilon\left(1+\epsilon\right)} \cos\left(\phi F_{\mathrm{UU}}^{\cos\left(\phi\right)}\right) + \epsilon \cos\left(2\phi F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right) \\ + & \lambda_{l} \left[\sqrt{2\epsilon\left(1-\epsilon\right)} \sin\left(\phi F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right) \\ + & S_{L} \left[\sqrt{2\epsilon\left(1+\epsilon\right)} \sin\left(\phi F_{\mathrm{UL}}^{\sin\left(\phi\right)}\right) + \epsilon \sin\left(2\phi F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right) \\ + & S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}}\right] + \sqrt{2\epsilon\left(1-\epsilon\right)} \cos\left(\phi F_{\mathrm{LL}}^{\cos\left(\phi\right)}\right) \\ + & S_{T} \left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT},\mathrm{T}}^{\sin\left(\phi+\phi_{S}\right)}\right) + \epsilon \sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)} \\ + & \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi_{S}F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}\right) \\ + & \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_{S}\right)}\right) \\ + & S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}\cos\left(\phi-\phi_{S}F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \\ + & \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_{S}F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)}\right) \right] \right\} \end{aligned}$$



## Leading twist Sub-leading Twist

# Selected results (1)

## The Naive-T-odd TMDs



**Boer-Mulders function** 
$$h_{1}^{\perp}$$
  

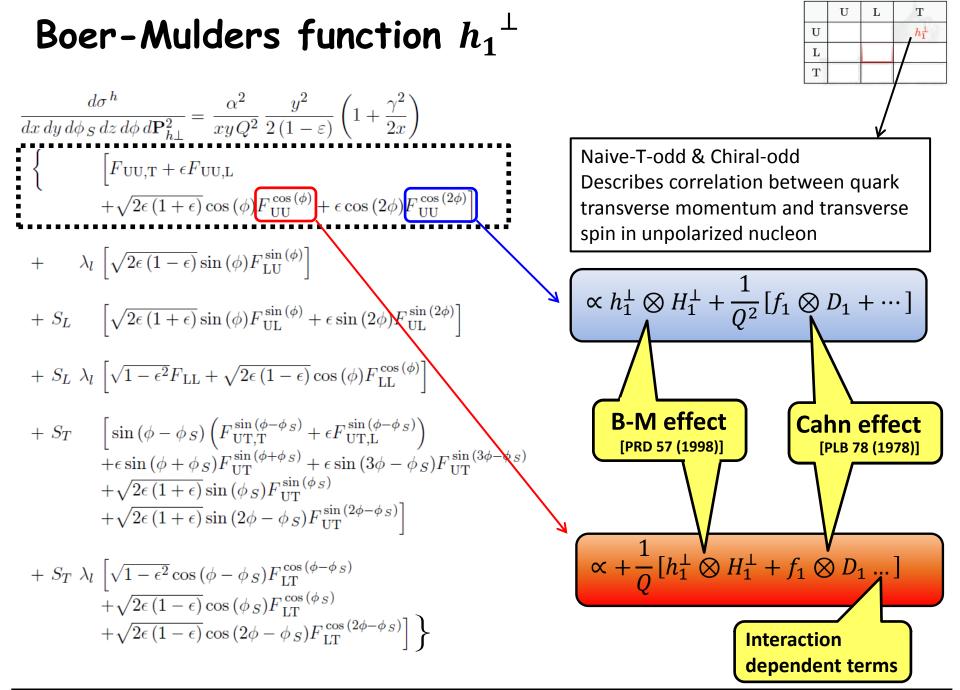
$$\frac{d\sigma^{h}}{dx dy d\phi_{s} dz d\phi dP_{h1}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

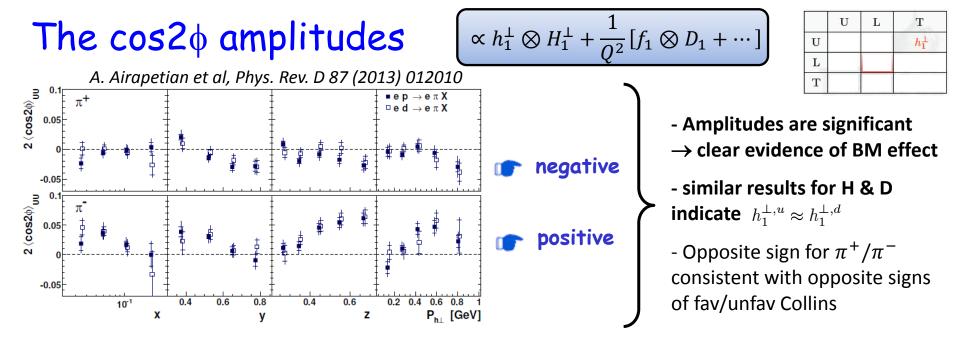
$$\begin{cases} \left[F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)}\cos(\phi)F_{UU}^{\cos(\phi)} + \epsilon\cos(2\phi)F_{UU}^{\cos(2\phi)}\right] \\ + \sqrt{2\epsilon(1+\epsilon)}\sin(\phi)F_{UU}^{\sin(\phi)} + \epsilon\sin(2\phi)F_{UU}^{\sin(2\phi)}\right] \\ + S_{L} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi)F_{UL}^{\sin(\phi)} + \epsilon\sin(2\phi)F_{UL}^{\sin(2\phi)}\right] \\ + S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{LL} + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi)F_{LL}^{\cos(\phi)}\right] \\ + \epsilon\sin(\phi+\phi_{S})F_{UT}^{\sin(\phi+\phi_{S})} + \epsilon\sin(3\phi-\phi_{S})F_{UT}^{\sin(3\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)}\sin(\phi_{S})F_{UT}^{\sin(\phi+\phi_{S})}\right] \\ + S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}\cos(\phi-\phi_{S})F_{UT}^{\sin(\phi+\phi_{S})}\right] \\ + S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}\cos(\phi-\phi_{S})F_{UT}^{\sin(2\phi-\phi_{S})}\right] \\ + S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}\cos(\phi-\phi_{S})F_{UT}^{\cos(\phi-\phi,g)} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi)F_{UT}^{\cos(\phi-\phi,g)} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi-\phi_{S})F_{UT}^{\cos(\phi-\phi,g)}\right] \right\}$$

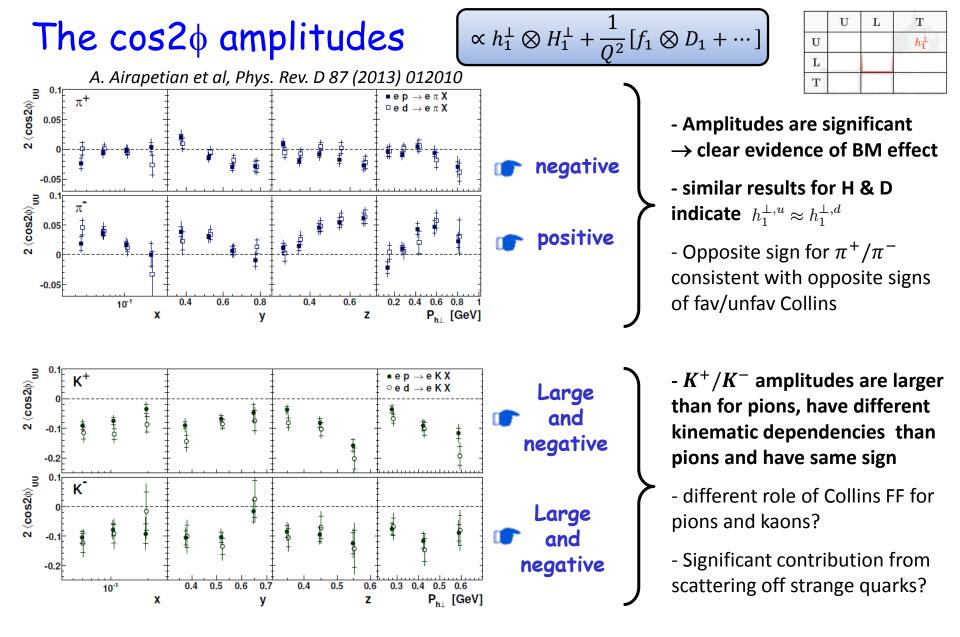
**Boer-Mulders function** 
$$h_{1}^{\perp}$$
  

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\begin{cases} \left[F_{\text{UU},\text{T}} + \epsilon F_{\text{UU},\text{L}} + \sqrt{2\epsilon(1+\epsilon)} \cos(\phi) F_{\text{UU}}^{\cos(\phi)} + \epsilon \cos(2\phi) F_{\text{UU}}^{\cos(2\phi)}\right] \\ + \sqrt{2\epsilon(1+\epsilon)} \cos(\phi) F_{\text{UU}}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{\text{UU}}^{\sin(2\phi)}\right] \\ + S_{L} \left[\sqrt{2\epsilon(1-\epsilon)} \sin(\phi) F_{\text{UL}}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{\text{UL}}^{\sin(2\phi)}\right] \\ + S_{T} \left[\sin(\phi-\phi_{S}) \left(F_{\text{UT},\text{T}}^{\sin(\phi+\phi_{S})} + \epsilon F_{\text{UT},\text{L}}^{\sin(\phi-\phi_{S})}\right) \\ + \epsilon \sin(\phi+\phi_{S}) F_{\text{UT}}^{\sin(\phi+\phi_{S})} + \epsilon \sin(3\phi-\phi_{S}) F_{\text{UT}}^{\sin(3\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)} \sin(\phi_{S}) F_{\text{UT}}^{\sin(\phi+\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)} \sin(2\phi-\phi_{S}) F_{\text{UT}}^{\sin(2\phi-\phi_{S})}\right] \\ + S_{T} \lambda_{i} \left[\sqrt{1-\epsilon^{2}}\cos(\phi-\phi_{S}) F_{\text{UT}}^{\cos(\phi-\phi,S)} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi,S) F_{\text{UT}}^{\cos(\phi-\phi,S)} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi,S) F_{\text{UT}}^{\cos(\phi-\phi,S)} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi,S) F_{\text{UT}}^{\cos(2\phi-\phi,S)}\right] \right\}$$

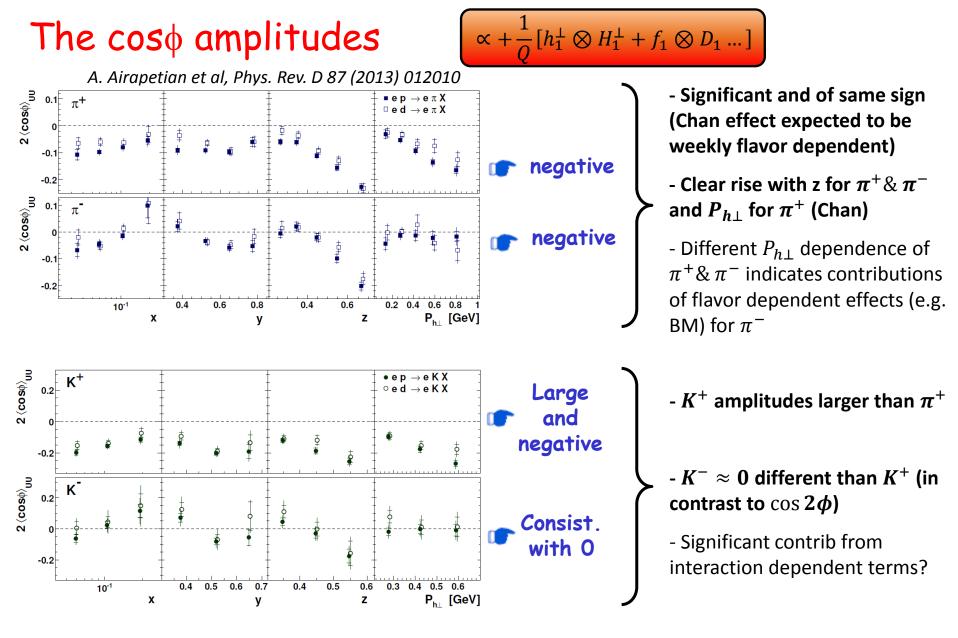






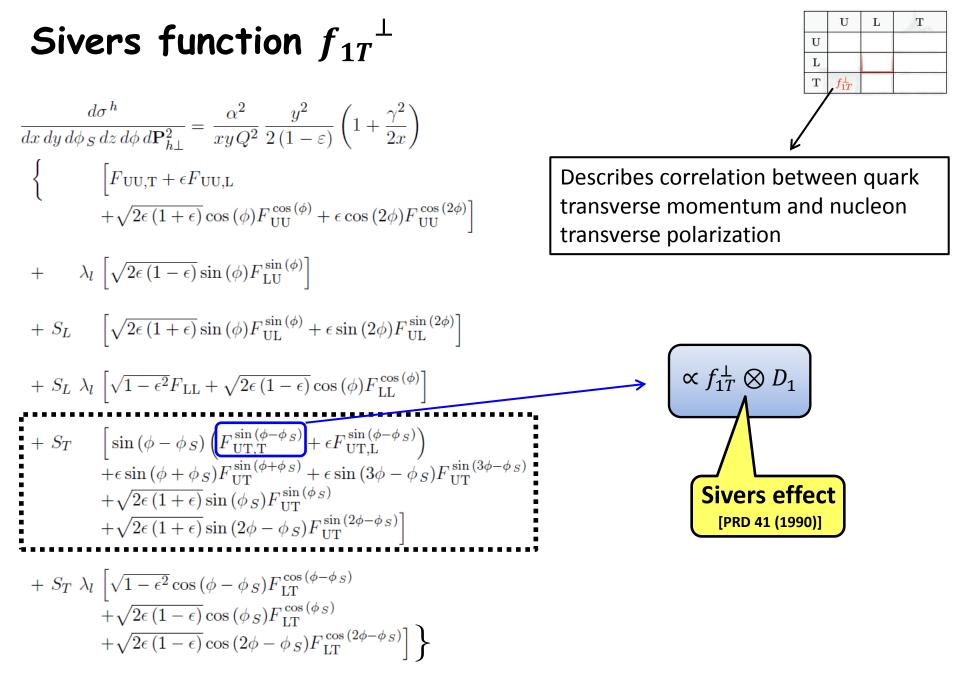
#### Analysis multi-dimensional in x, y, z, and Pt

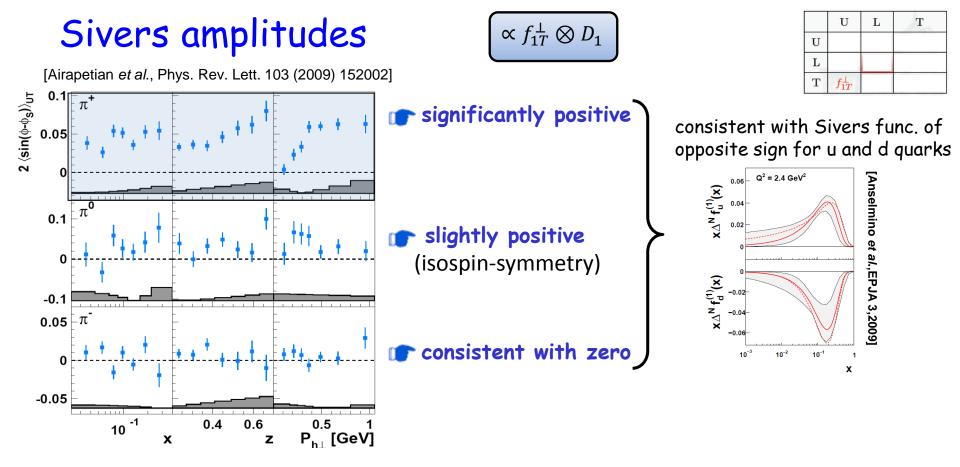
Create your own projections of results through: http://www-hermes.desy.de/cosnphi/

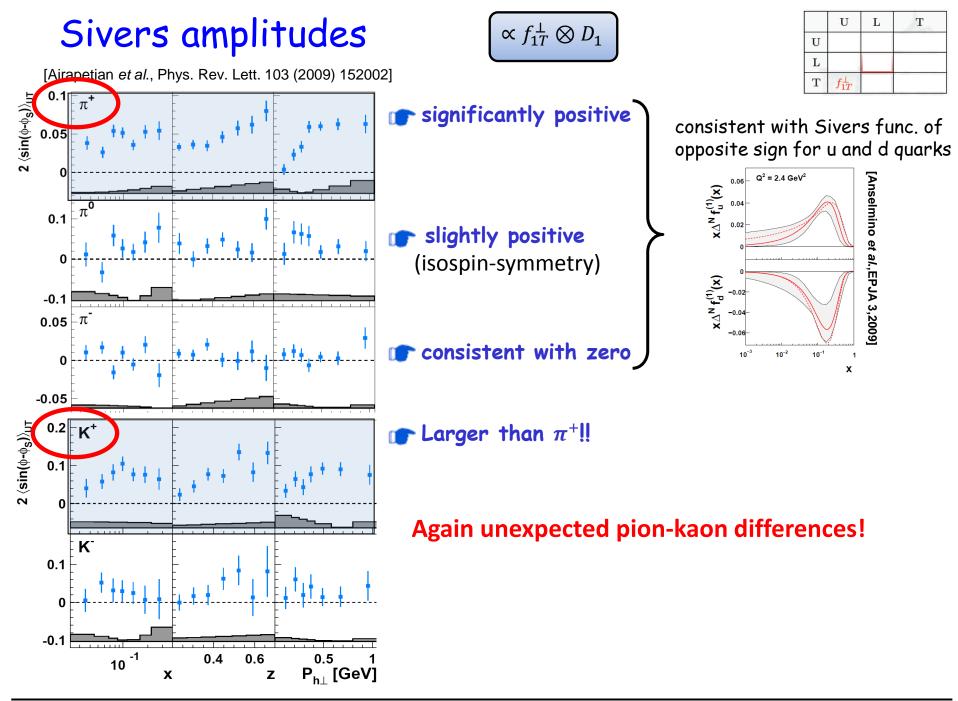


#### Analysis multi-dimensional in x, y, z, and Pt

Create your own projections of results through: http://www-hermes.desy.de/cosnphi/





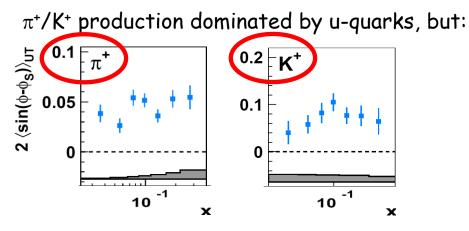


## The kaon puzzle in Sivers

10 <sup>-1</sup>

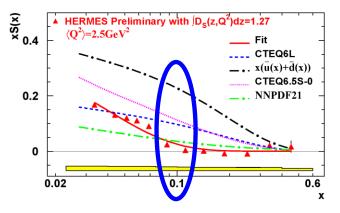
Х

|   | U                | L | Т |
|---|------------------|---|---|
| U |                  |   |   |
| L |                  |   |   |
| т | $f_{1T}^{\perp}$ |   |   |



$$\pi^+ \equiv \left| u \overline{d} \right\rangle, \ K^+ \equiv \left| u \overline{s} \right\rangle \rightarrow$$

different role of various sea quarks?



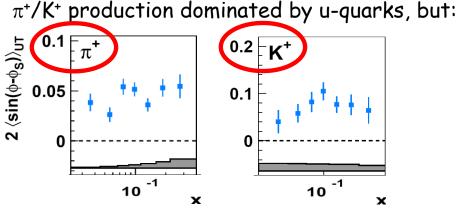


Flavor dependence of  $k_T$  in fragment.

 $\rightarrow$  impact through convolution integral

# The kaon puzzle in Sivers

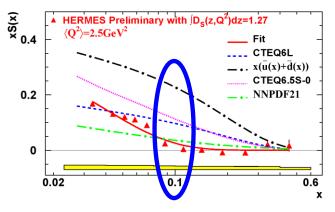
|   | U                | L | Т |
|---|------------------|---|---|
| U |                  |   |   |
| L |                  |   |   |
| т | $f_{1T}^{\perp}$ |   |   |



$$\boxed{\phantom{1}}$$

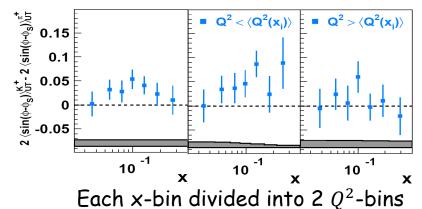
$$\pi^{+} \equiv \left| u \overline{d} \right\rangle, \ K^{+} \equiv \left| u \overline{s} \right\rangle \rightarrow$$

different role of various sea quarks ?

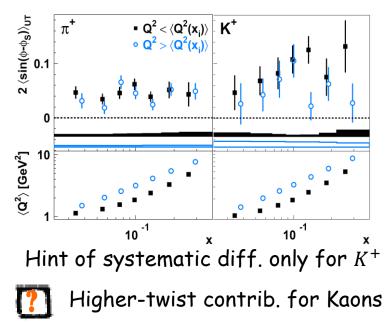




Flavor dependence of  $k_T$  in fragment.  $\rightarrow$  impact through convolution integral

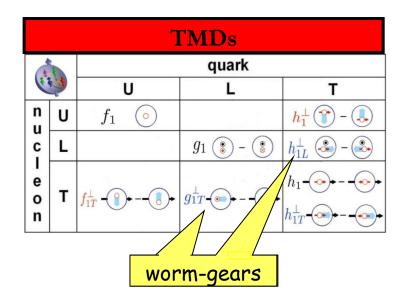


Significant deviations observed only at low  $Q^{\rm 2}$ 



# Selected results (2)

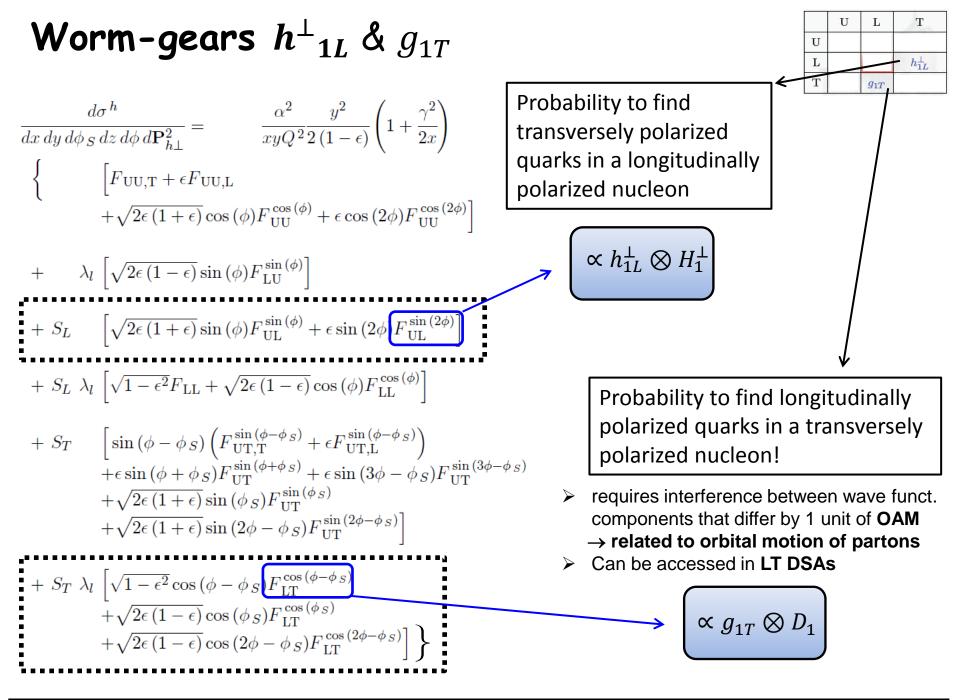
## The worm-gears



Worm-gears 
$$h^{\perp}_{1L} \& g_{1T}$$
  

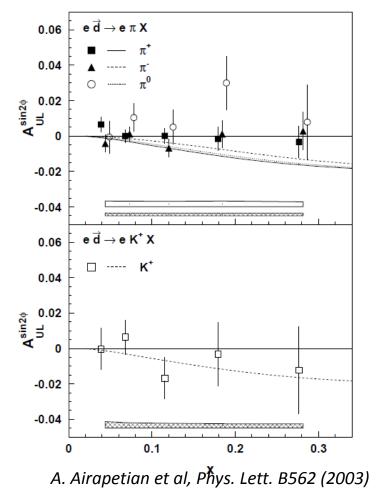
$$\frac{d\sigma^{h}}{dx \, dy \, d\phi \, s \, dz \, d\phi \, dP_{hL}^{2}} = \frac{\alpha^{2} \, y^{2}}{xyQ^{2} \, (1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

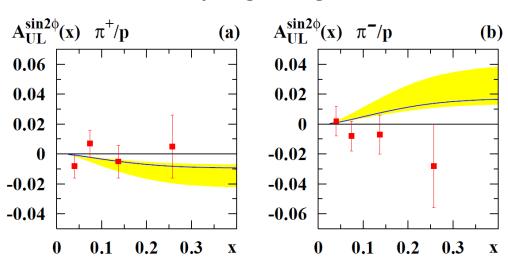
$$\left\{ \begin{array}{c} \left[F_{\text{UU,T}} + \epsilon F_{\text{UU,L}} \\ + \sqrt{2\epsilon(1+\epsilon)} \cos(\phi) F_{\text{UU}}^{\cos(\phi)} + \epsilon \cos(2\phi) F_{\text{UU}}^{\cos(2\phi)}\right] \\ + \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)} \sin(\phi) F_{\text{LU}}^{\sin(\phi)}\right] \\ + \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)} \sin(\phi) F_{\text{UL}}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{\text{UL}}^{\sin(2\phi)}\right] \\ + S_{L} \left[\sqrt{2\epsilon(1+\epsilon)} \sin(\phi) F_{\text{UL}}^{\sin(\phi+\phi)} + \epsilon \sin(2\phi) F_{\text{UL}}^{\sin(2\phi)}\right] \\ + S_{T} \left[\sin(\phi-\phi_{S}) \left(F_{\text{UT,T}}^{\sin(\phi+\phi_{S})} + \epsilon F_{\text{UT,L}}^{\sin(\phi+\phi_{S})}\right) \\ + \epsilon \sin(\phi+\phi_{S}) F_{\text{UT}}^{\sin(\phi+\phi_{S})} + \epsilon \sin(3\phi-\phi_{S}) F_{\text{UT}}^{\sin(3\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)} \sin(\phi) F_{\text{UT}}^{\sin(\phi+\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)} \sin(\phi-\phi_{S}) F_{\text{UT}}^{\sin(2\phi-\phi_{S})}\right] \\ + S_{T} \lambda_{i} \left[\sqrt{1-\epsilon^{2}}\cos(\phi-\phi_{S}) F_{\text{UT}}^{\cos(\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi) F_{\text{UT}}^{\cos(\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi) F_{\text{UT}}^{\cos(\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi-\phi_{S}) F_{\text{UT}}^{\cos(\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi-\phi_{S}) F_{\text{UT}}^{\cos(2\phi-\phi_{S})}\right] \right\}$$



# The sin( $2\phi$ ) amplitude

Deuterium target





Hydrogen target

 $\propto h_{1L}^{\perp} \otimes H_1^{\perp}$ 

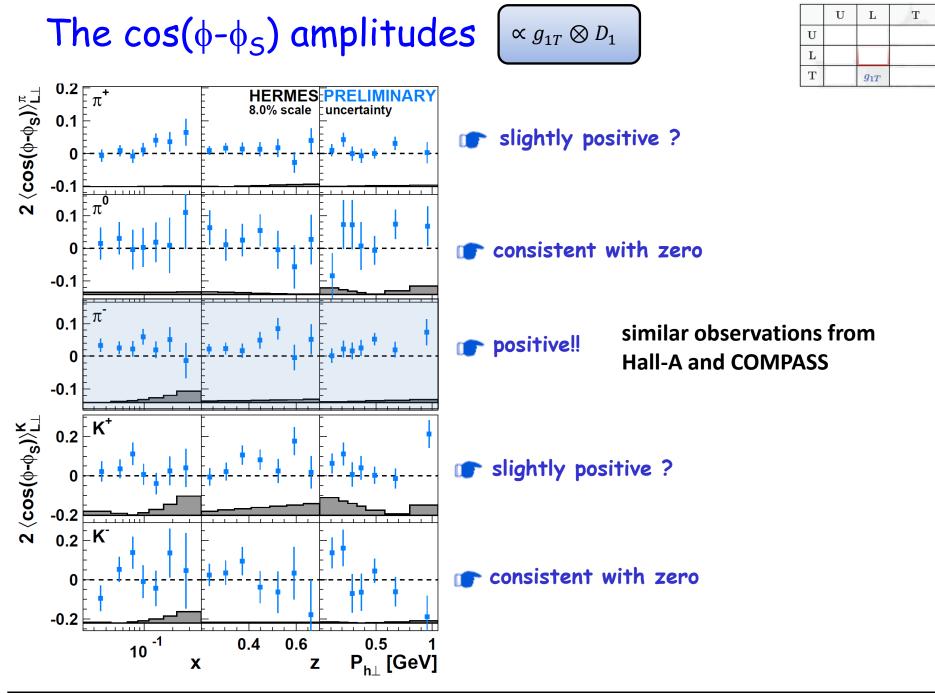
A. Airapetian et al, Phys. Rev. Lett. 84 (2000)

### Amplitudes consistent with zero for all mesons and for both H and D targets.

Similar observations by COMPASS on deuterium

CLAS reported significant amplitudes for pions on a proton target.

# $\begin{array}{|c|c|c|c|} U & L & T \\ \hline U & & \\ L & & \\ T & & \\ \end{array}$



# Selected results (3) The higher-twist $F_{LU}^{\sin \phi}$ term

## The higher-twist $F_{LU}^{\sin \phi}$ term

$$\begin{aligned} \frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^{2}}{2x}\right) \\ \left\{ \begin{array}{c} \left[F_{\mathrm{UU},\mathrm{T}} + \epsilon F_{\mathrm{UU},\mathrm{L}} + \sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right] \\ + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UU}}^{\sin\left(\phi\right)} + \epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\sin\left(2\phi\right)}\right] \\ + S_{L} \left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right] \\ + S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\sin\left(\phi-\phi_{S}\right)}\right) \\ + \epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)} + \epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)} \\ + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi,S\right)} \\ + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_{S}\right)}\right] \\ + S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}\cos\left(\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\cos\left(\phi-\phi,S\right)}\right] \end{aligned}$$

$$\left. \left\{ \begin{array}{c} 1 & \epsilon \\ +\sqrt{2\epsilon \left(1-\epsilon\right)} \cos \left(\phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(\phi_{S}\right)} \\ +\sqrt{2\epsilon \left(1-\epsilon\right)} \cos \left(2\phi-\phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(2\phi-\phi_{S}\right)} \right] \end{array} \right\}$$

 $\begin{array}{c|cccc}
U & L & T \\
U & f_1 & & h_1^{\perp} \\
L & & & & \\
\hline
7 & & & & \\
\end{array}$ 

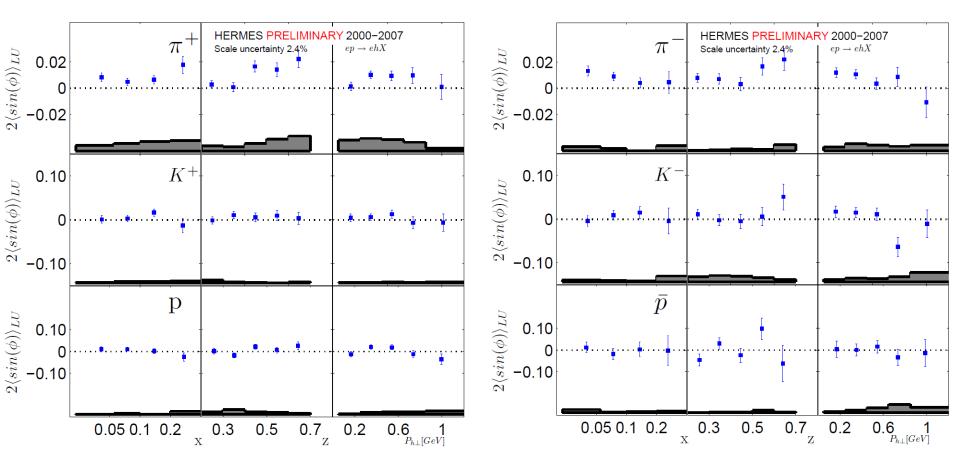
Sensitive to  $f_1$ , Boer-Mulders + higher-twist DF and FF

$$\propto + \frac{1}{Q} \left[ e \otimes H_1^{\perp} + \boldsymbol{f_1} \otimes \tilde{G}^{\perp} + g^{\perp} \otimes D_1 + \boldsymbol{h_1}^{\perp} \otimes \tilde{E} \right]$$

# $\propto + \frac{1}{Q} \left[ e \otimes H_1^{\perp} + f_1 \otimes \tilde{G}^{\perp} + g^{\perp} \otimes D_1 + h_1^{\perp} \otimes \tilde{E} \right] \qquad \begin{bmatrix} & U & L & T \\ U & f_1 & & h_1^{\perp} \\ L & & & \\ T & & & \end{bmatrix}$

## H target, 2000-2007 data 0.2<z<0.7

The  $F_{LII}^{\sin \phi}$  term



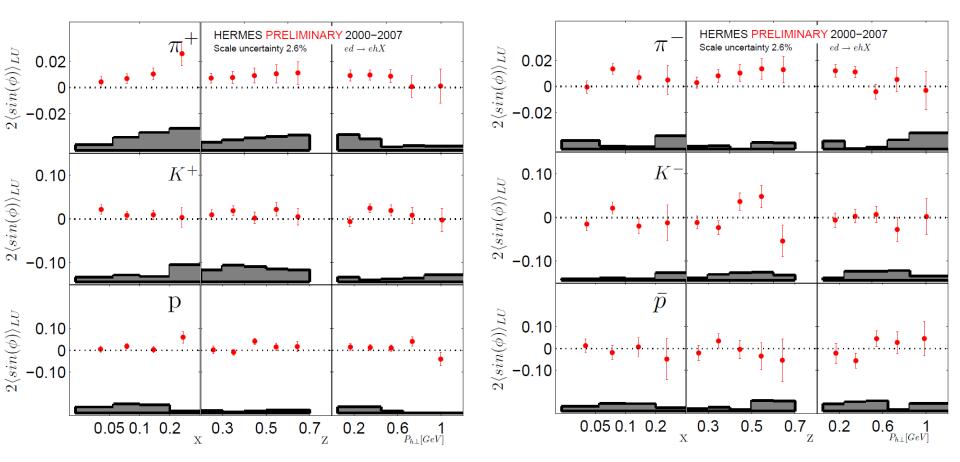
Amplitudes are positive for pions and consistent with zero for kaons and protons

## The $F_{LU}^{\sin \phi}$ term

 $\propto + \frac{1}{O} \left[ e \otimes H_1^{\perp} + \boldsymbol{f_1} \otimes \tilde{G}^{\perp} + g^{\perp} \otimes D_1 + \boldsymbol{h_1}^{\perp} \otimes \tilde{E} \right]$ 

|   | U     | L | Т           |
|---|-------|---|-------------|
| U | $f_1$ |   | $h_1^\perp$ |
| L |       |   |             |
| Т |       |   |             |

## D target, 2000-2007 data 0.2<z<0.7

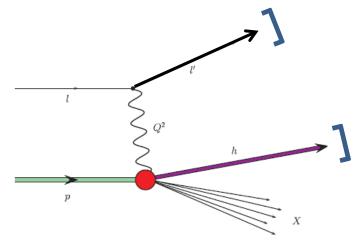


Amplitudes are positive for pions and consistent with zero for kaons and protons Deuterium target: same features, less statistics

# Part II

## Inclusive electroproduction of hadrons

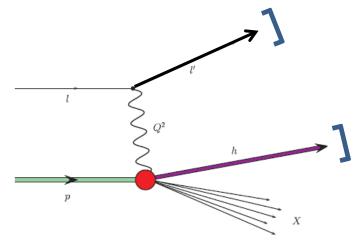
## From SIDIS to inclusive hadron production



## **SIDIS:** $lp^{\uparrow} \rightarrow l'hX$

- Hadron detected in coincidence with lepton
- DIS regime ( $Q^2 > 1 \ GeV^2$ )
- Hard scales:  $Q^2$ ,  $P_{h\perp}$  (w.r.t.  $\gamma^*$ )
- Factorization valid for  ${P_{h\perp}}^2 \ll Q^2$

## From SIDIS to inclusive hadron production



## **SIDIS**: $lp^{\uparrow} \rightarrow l'hX$

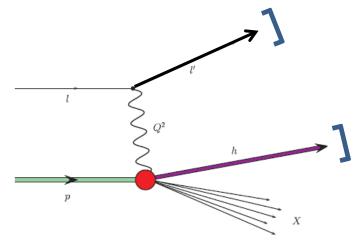
- Hadron detected in coincidence with lepton
- DIS regime ( $Q^2 > 1 \ GeV^2$ )
- Hard scales:  $Q^2$ ,  $P_{h\perp}$  (w.r.t.  $\gamma^*$ )
- Factorization valid for  ${P_{h\perp}}^2 \ll Q^2$

# p

## Inclusive hadrons: $lp^{\uparrow} \rightarrow hX$

- Lepton is not detected  $\rightarrow$  no info on  $Q^2$
- data dominated by  $Q^2 \approx 0$ (quasi-real photoproduction regime)
- Hard scales:  $P_T$  (w.r.t. incident lepton)
- Factorization valid for large  $P_T$ ?
- Main variables:  $x_F = 2 \frac{P_L}{\sqrt{s}}$  ,  $P_T$
- Selected events contain at least 1 charged hadron track ( $\pi$  or K) regardless of whether there was also a scattered lepton in acceptance or not.

## From SIDIS to inclusive hadron production

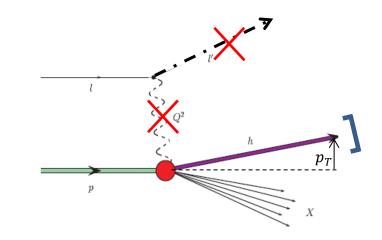


## **SIDIS**: $lp^{\uparrow} \rightarrow l'hX$

- Hadron detected in coincidence with lepton
- DIS regime ( $Q^2 > 1 \ GeV^2$ )
- Hard scales:  $Q^2$ ,  $P_{h\perp}$  (w.r.t.  $\gamma^*$ )
- Factorization valid for  ${P_{h\perp}}^2 \ll Q^2$

#### Hadron yields for UT data

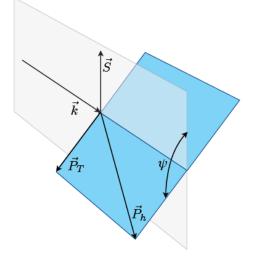
|         | $\pi^+$ | $\pi^-$ | <i>K</i> <sup>+</sup> | <i>K</i> <sup>-</sup> |
|---------|---------|---------|-----------------------|-----------------------|
| SIDIS   | 7.3 M   | 5.4 M   | 131 K                 | 54 K                  |
| Incl. h | 60 M    | 50 M    | 5.1 M                 | 2.8 M                 |



## Inclusive hadrons: $lp^{\uparrow} \rightarrow hX$

- Lepton is not detected  $\rightarrow$  no info on  $Q^2$
- data dominated by  $Q^2 \approx 0$ (quasi-real photoproduction regime)
- Hard scales:  $P_T$  (w.r.t. incident lepton)
- Factorization valid for large  $P_T$ ?
- Main variables:  $x_F = 2 rac{P_L}{\sqrt{s}}$  ,  $P_T$
- Selected events contain at least 1 charged hadron track ( $\pi$  or K) regardless of whether there was also a scattered lepton in acceptance or not.
- SIDIS events constitute a small subsample

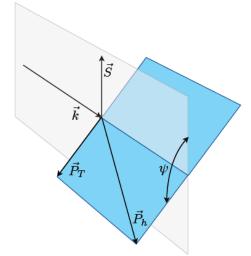
## Cross section and azimuthal asymmetries



$$d\sigma = d\sigma_{UU} \left[ 1 + S_{\perp} A_{UT} \frac{\sin\psi}{\sin\psi} \sin\psi \right]$$
$$\downarrow$$
$$\vec{S} \cdot \left(\vec{P}_h \times \vec{k}\right) \propto \sin\psi$$

 $oldsymbol{\psi}$ : azimuthal angle between the upwards target spin direction and hadron production plane around the beam direction

## Cross section and azimuthal asymmetries

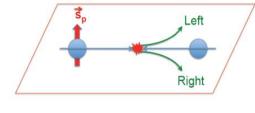


$$d\sigma = d\sigma_{UU} \left[ 1 + S_{\perp} A_{UT} \frac{\sin\psi}{\sin\psi} \sin\psi \right]$$
$$\downarrow$$
$$\vec{S} \cdot \left(\vec{P}_h \times \vec{k}\right) \propto \sin\psi$$

 $oldsymbol{\psi}$ : azimuthal angle between the upwards target spin direction and hadron production plane around the beam direction

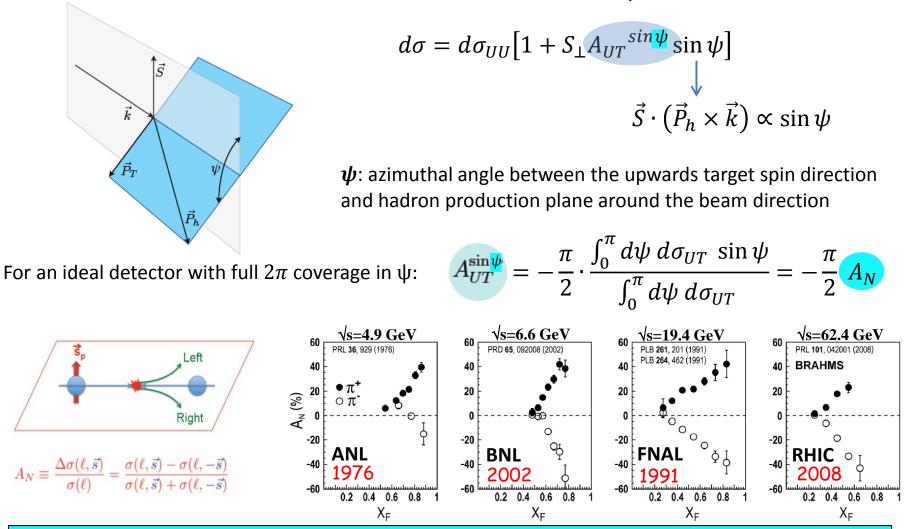
For an ideal detector with full  $2\pi$  coverage in  $\psi$ :

$$A_{UT}^{\sin\psi} = -\frac{\pi}{2} \cdot \frac{\int_0^{\pi} d\psi \, d\sigma_{UT} \, \sin\psi}{\int_0^{\pi} d\psi \, d\sigma_{UT}} = -\frac{\pi}{2} A_N$$



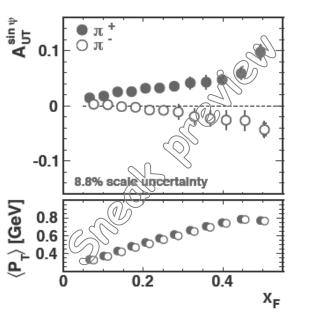
 $A_N \equiv \frac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)} = \frac{\sigma(\ell, \vec{s}) - \sigma(\ell, -\vec{s})}{\sigma(\ell, \vec{s}) + \sigma(\ell, -\vec{s})}$ 

## Cross section and azimuthal asymmetries



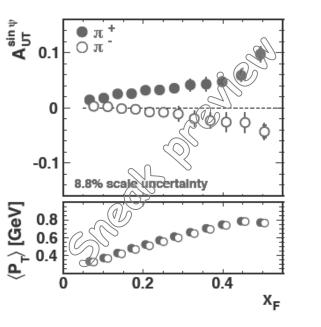
Polarized pp scattering experiments observe asymmetries up to 40%!

- mirror symmetric for  $\pi^+$  and  $\pi^-$  vs.  $x_F$
- reproduced by various exp. over 35 years, persistent with energy ( $\sqrt{s}$  from 5 to 200 GeV !)
- Cannot be interpreted using the standard leading-twist framework based on collinear factorization



 $\pi^+$  amplitude rises linearly with  $x_F$  up to 10%

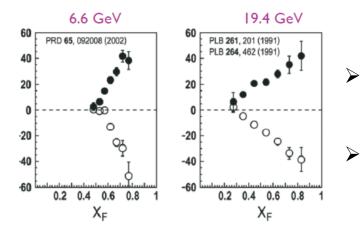
 $\pi^-$  is negative, similar trend, smaller (up to 4%)



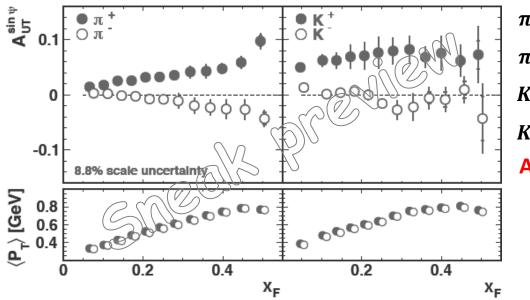
 $\pi^+$  amplitude rises linearly with  $x_F$  up to 10%

 $\pi^-$  is negative, similar trend, smaller (up to 4%)

General trend very similar to  $A_N$  in  $pp^{\uparrow}$  hard scattering



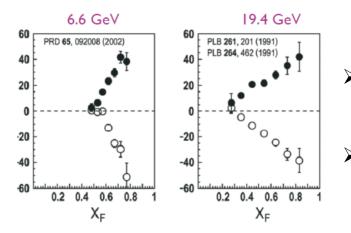
- $A_N$  in  $p^{\uparrow}p$  scattering is much larger and mirror symmetric for  $\pi^+$  and  $\pi^-$
- u-quark dominance in  $ep^{\uparrow}$  scattering can
   explain the relatively smaller size for  $\pi^{-}$



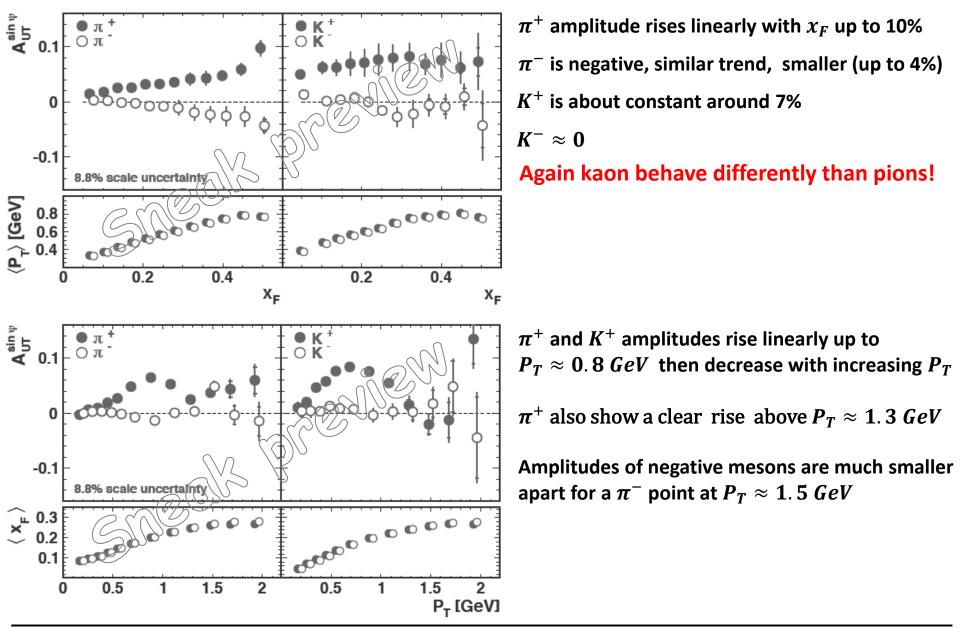
 $\pi^+$  amplitude rises linearly with  $x_F$  up to 10%  $\pi^-$  is negative, similar trend, smaller (up to 4%)  $K^+$  is about constant around 7%  $K^- \approx 0$ 

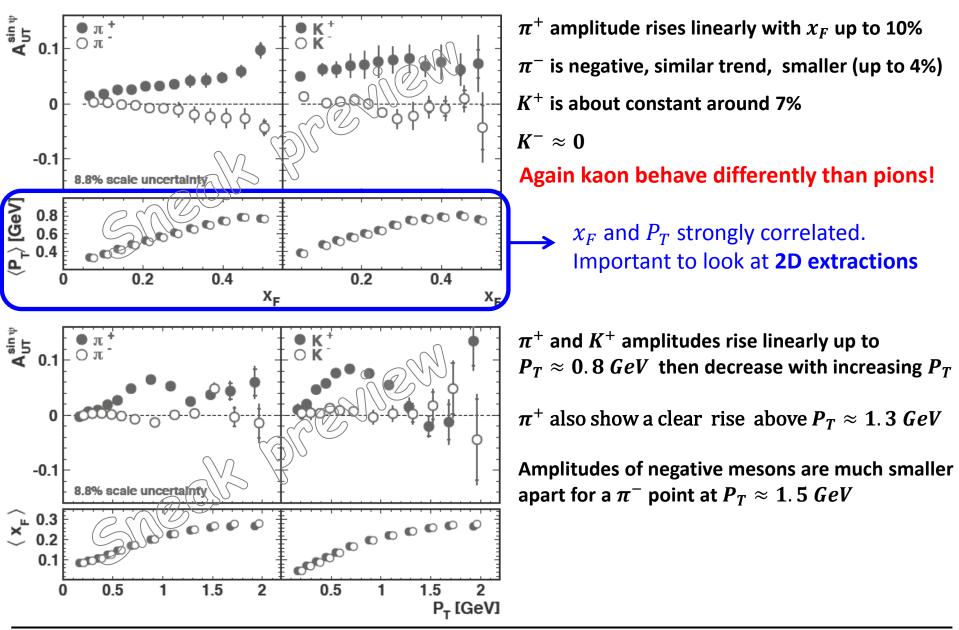
Again kaon behave differently than pions!

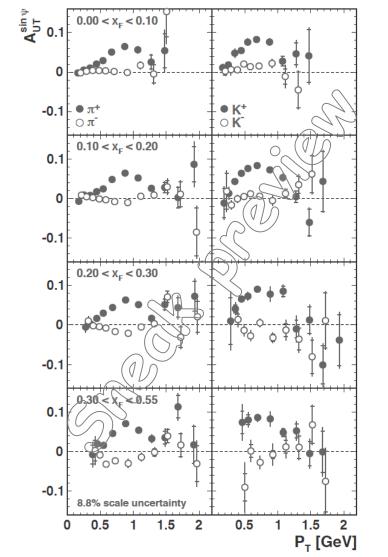
General trend very similar to  $A_N$  in  $pp^{\uparrow}$  hard scattering

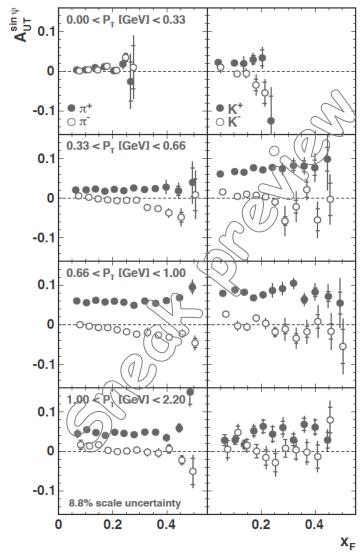


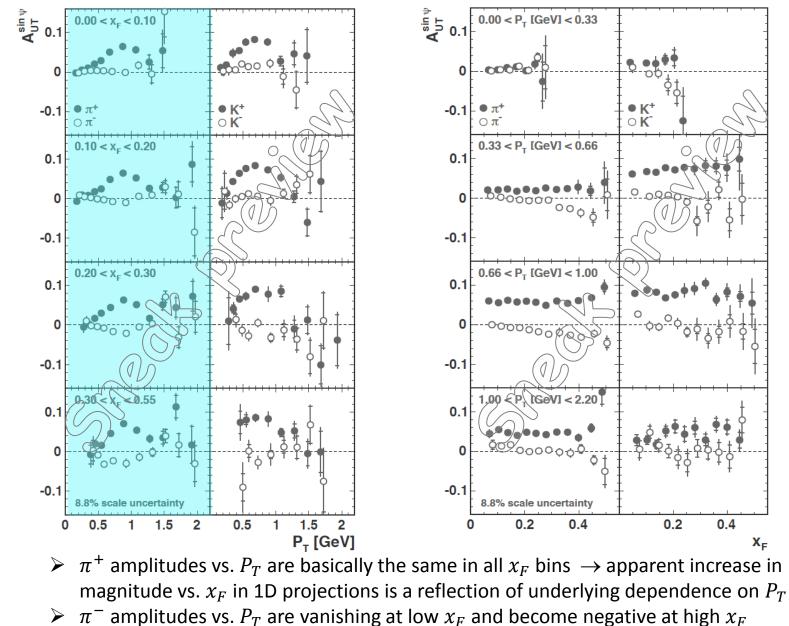
- $A_N$  in  $p^{\uparrow}p$  scattering is much larger and mirror symmetric for  $\pi^+$  and  $\pi^-$
- u-quark dominance in  $ep^{\uparrow}$  scattering can explain the relatively smaller size for  $\pi^{-}$





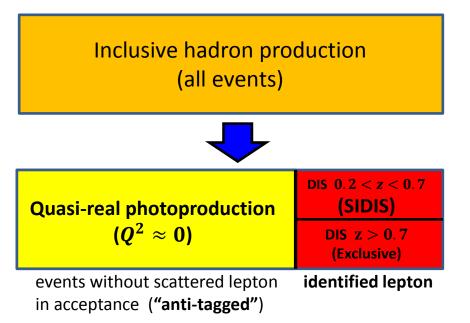




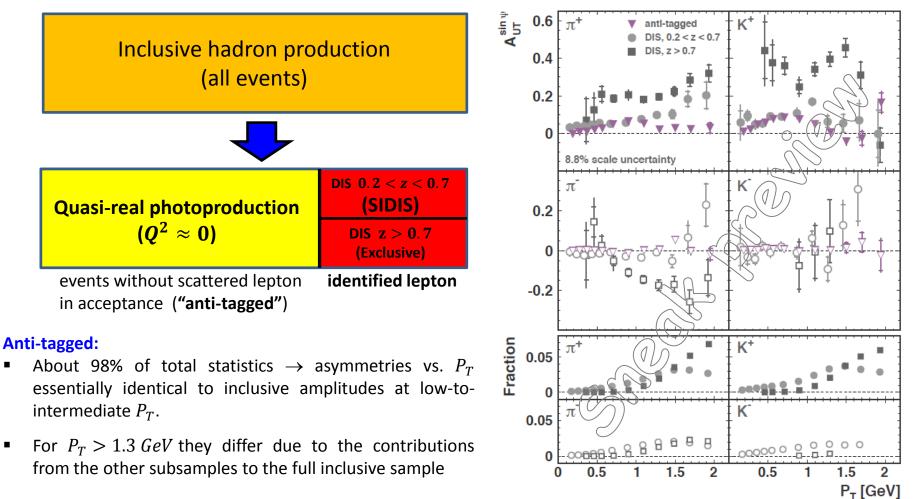


L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

- The inclusive hadron electroproduction data set is a mixture of various contributions with different kinematic dependences is difficult to draw conclusions on the underlying physics from the observed kinematic dependences
- More insight may be gained by studying separately the asymmetries for different subsamples



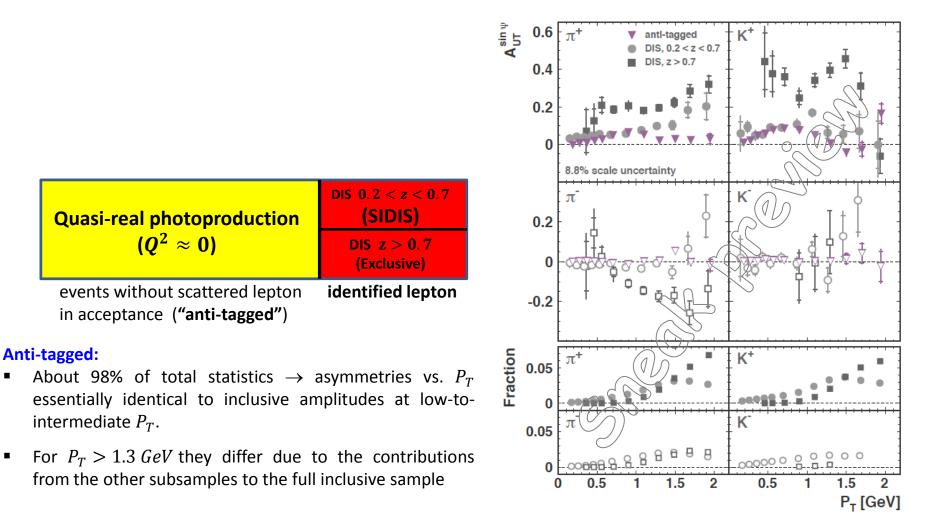
- The inclusive hadron electroproduction data set is a **mixture of various contributions** with different kinematic dependences  $\implies$  difficult to draw conclusions on the underlying physics from the observed kinematic dependences
- More insight may be gained by studying separately the asymmetries for different subsamples



L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

#### DIS 0.2 < z < 0.7:

- $\pi^+/\pi^-$  amplitudes larger than inclusive in full  $P_T$  range and rise linearly with  $P_T$  (up to 20% for  $\pi^+$ )
- In this regime  $Q^2 > P_T^2$  and TMDs can contribute without  $P_T$  -suppression
- Since  $\psi$  and  $\phi \phi_S$  are closely related the observed  $P_T$  dependence might arise from the Sivers effect



#### DIS 0.2 < z < 0.7:

- $\pi^+/\pi^-$  amplitudes larger than inclusive in full  $P_T$  range and rise linearly with  $P_T$  (up to 20% for  $\pi^+$ )
- In this regime  $Q^2 > P_T^2$  and TMDs can contribute without  $P_T$  -suppression
- Since  $\psi$  and  $\phi \phi_s$  are closely related the observed  $P_T$  dependence might arise from the Sivers effect

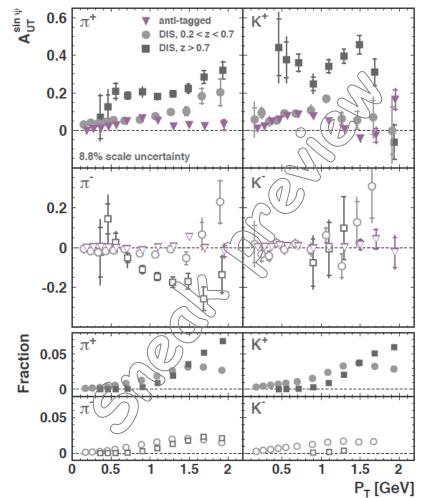
#### DIS z > 0.7:

- Very large asymmetries observed for pions and especially K<sup>+</sup> (more than 40%!)
- Pions receive large contributions from decays of exclusive ρ
- π<sup>-</sup> large amplitude may come from d-quark Sivers function in conjunction with favored fragmentation of the struck (down) quark

Quasi-real photoproduction  
$$(Q^2 \approx 0)$$
Dis  $0.2 < z < 0.7$   
(SIDIS)Dis  $z > 0.7$   
(Exclusive)events without scattered lepton  
in acceptance ("anti-tagged")

#### Anti-tagged:

- About 98% of total statistics  $\rightarrow$  asymmetries vs.  $P_T$  essentially identical to inclusive amplitudes at low-to-intermediate  $P_T$ .
- For  $P_T > 1.3 \ GeV$  they differ due to the contributions from the other subsamples to the full inclusive sample



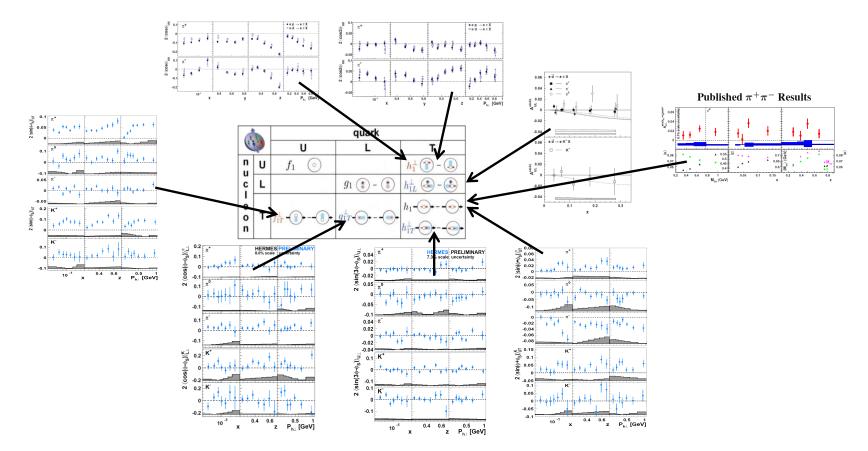
L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

## Conclusions

A rich phenomenology and surprising effects arise when intrinsic  $p_T$  is not integrated out! Flavor sensitivity ensured by the excellent hadron ID revealed interesting facets of data

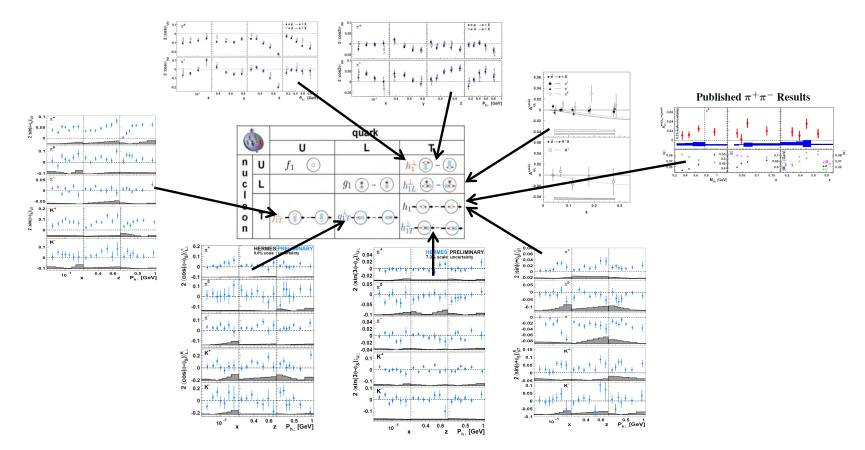
## Conclusions

A rich phenomenology and surprising effects arise when intrinsic  $p_T$  is not integrated out! Flavor sensitivity ensured by the excellent hadron ID revealed interesting facets of data The HERMES experiment has played a pioneering role in these studies:



## Conclusions

A rich phenomenology and surprising effects arise when intrinsic  $p_T$  is not integrated out! Flavor sensitivity ensured by the excellent hadron ID revealed interesting facets of data The HERMES experiment has played a pioneering role in these studies:



HERMES results in inclusive hadron electroproduction reveal interesting features in common with  $A_N$  in  $pp^{\uparrow}$  scattering and with Sivers effect in SIDIS. A rich phenomenology is revealed when the various subsamples are analyzed separately

L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

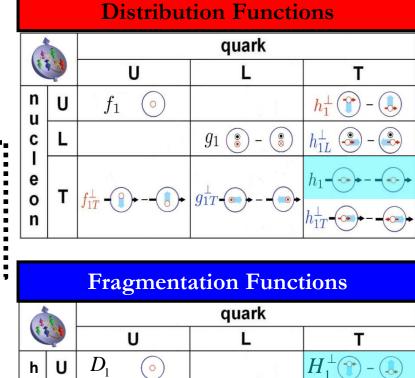


### Transversity

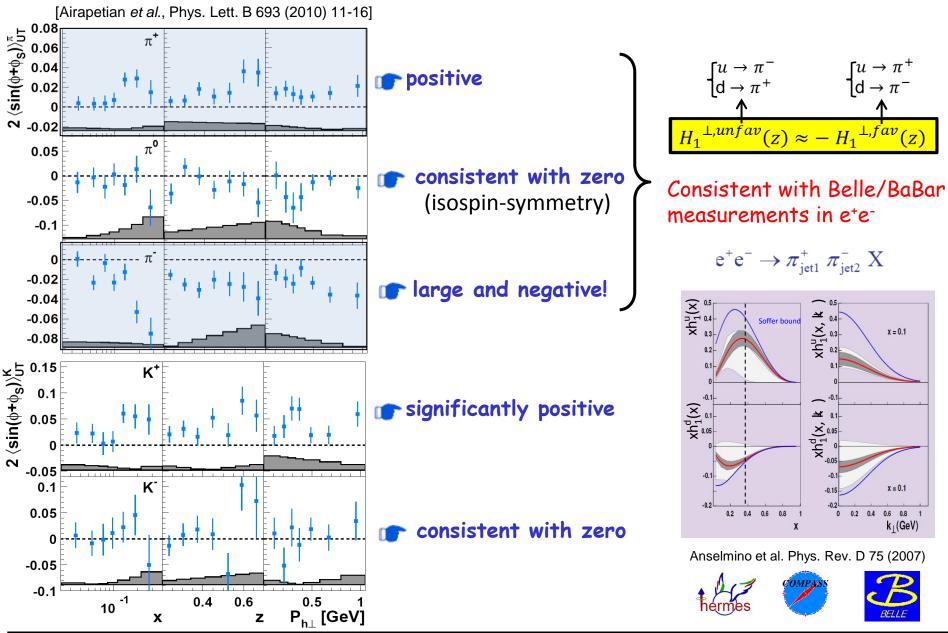
$$\begin{aligned} \frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2}}{xy \, Q^{2}} \frac{y^{2}}{2 \left(1-\varepsilon\right)} \left(1+\frac{\gamma^{2}}{2x}\right) \\ & \left\{ \begin{array}{c} \left[F_{\mathrm{UU},\mathrm{T}} + \epsilon F_{\mathrm{UU},\mathrm{L}} \\ + \sqrt{2\epsilon \left(1+\epsilon\right)} \cos \left(\phi\right) F_{\mathrm{UU}}^{\cos \left(\phi\right)} + \epsilon \cos \left(2\phi\right) F_{\mathrm{UU}}^{\cos \left(2\phi\right)}\right] \\ + & \lambda_{l} \left[\sqrt{2\epsilon \left(1-\epsilon\right)} \sin \left(\phi\right) F_{\mathrm{LU}}^{\sin \left(\phi\right)}\right] \\ + & S_{L} \left[\sqrt{2\epsilon \left(1+\epsilon\right)} \sin \left(\phi\right) F_{\mathrm{UL}}^{\sin \left(\phi\right)} + \epsilon \sin \left(2\phi\right) F_{\mathrm{UL}}^{\sin \left(2\phi\right)}\right] \\ + & S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{\mathrm{LL}} + \sqrt{2\epsilon \left(1-\epsilon\right)} \cos \left(\phi\right) F_{\mathrm{LL}}^{\cos \left(\phi\right)}\right] \\ + & S_{T} \left[\sin \left(\phi - \phi_{S}\right) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin \left(\phi-\phi_{S}\right)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin \left(\phi-\phi_{S}\right)}\right) \\ + & \epsilon \sin \left(\phi+\phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(\phi+\phi_{S}\right)} + \epsilon \sin \left(3\phi-\phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(3\phi-\phi_{S}\right)} \\ + & \sqrt{2\epsilon \left(1+\epsilon\right)} \sin \left(2\phi-\phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(2\phi-\phi_{S}\right)}\right] \\ + & S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} \cos \left(\phi-\phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(\phi-\phi_{S}\right)} \\ + & \sqrt{2\epsilon \left(1-\epsilon\right)} \cos \left(2\phi-\phi_{S}\right) F_{\mathrm{LT}}^{\cos \left(2\phi-\phi_{S}\right)}\right] \right\} \\ \end{array}$$

$$F_{UT}^{\sin(\phi_h + \phi_S)} = \mathcal{C} \left[ -\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} h_1 H_1^{\perp} \right]$$

Describes probability to find transversely polarized quarks in a transversely polarized nucleon



### **Collins amplitudes** $\propto h_1(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$



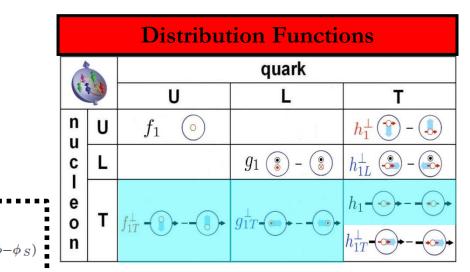
L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

### Subleading twist

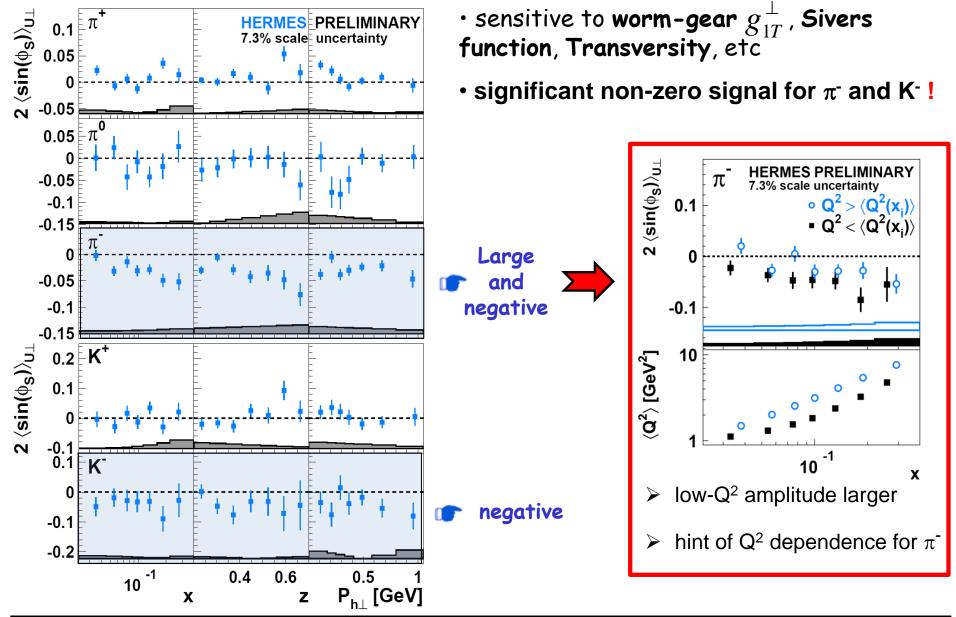
$$\begin{aligned} \frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right) \\ \left\{ \begin{array}{c} \left[F_{\mathrm{UU,T}}+\epsilon F_{\mathrm{UU,L}}\right] \\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right] \\ + &\lambda_{l}\left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right] \\ + &S_{L}\left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)}+\epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right] \\ + &S_{L}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}}+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\cos\left(\phi\right)}\right] \\ + &S_{T}\left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi-\phi_{S}\right)}+\epsilon F_{\mathrm{UT,L}}^{\sin\left(\phi-\phi_{S}\right)}\right) \\ &+\epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}+\epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi\right)} \\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_{S}\right)}\right] \\ + &S_{T}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}\cos\left(\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \\ &+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \\ &+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(2\phi-\phi_{S}\right)}\right] \right\} \end{aligned}$$

$$\begin{aligned} F_{UT}^{\sin\phi_S} &= \frac{2M}{Q} \, \mathcal{C} \bigg\{ \left( x f_T D_1 - \frac{M_h}{M} h_1 \frac{\tilde{H}}{z} \right) \\ &- \frac{k_T \cdot p_T}{2MM_h} \left[ \left( x h_T H_1^{\perp} + \frac{M_h}{M} g_{1T} \, \frac{\tilde{G}^{\perp}}{z} \right) - \left( x h_T^{\perp} H_1^{\perp} - \frac{M_h}{M} f_{1T}^{\perp} \, \frac{\tilde{D}^{\perp}}{z} \right) \right] \bigg\} \end{aligned}$$

Sensitive to worm-gear  $g_{1T}^{\perp}$ , sivers, transversity + higher-twist DF and FF



### Subleading-twist $sin(\phi_S)$ Fourier component



L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

### Pretzelosity

| $F^{\sin(3\phi_h-\phi_S)} - C$ | $\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_{T}\right)\left(\boldsymbol{p}_{T}\cdot\boldsymbol{k}_{T}\right)+\boldsymbol{p}_{T}^{2}\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_{T}\right)-4\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_{T}\right)^{2}\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_{T}\right)}{2M^{2}M}h_{1T}^{\perp}H_{1}^{\perp}$ | ] |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $T_{UT} = C$                   | $2M^2M_h$ $n_{1T}n_1$                                                                                                                                                                                                                                                                                                                                             |   |

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi} \, P_{h\perp}^{2} = \frac{\alpha^{2} \quad y^{2}}{xyQ^{2} \, 2(1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{UU,T} + \epsilon F_{UU,L} \\ + \sqrt{2\epsilon(1+\epsilon)} \cos(\phi) F_{UU}^{\cos(\phi)} + \epsilon \cos(2\phi) F_{UU}^{\cos(2\phi)} \end{bmatrix} + \delta_{L} \left[ \sqrt{2\epsilon(1-\epsilon)} \sin(\phi) F_{UL}^{\sin(\phi)} \right] + \epsilon \cos(2\phi) F_{UU}^{\cos(2\phi)} \end{bmatrix} + \delta_{L} \left[ \sqrt{2\epsilon(1-\epsilon)} \sin(\phi) F_{UL}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{UL}^{\sin(2\phi)} \end{bmatrix} + S_{L} \left[ \sqrt{2\epsilon(1+\epsilon)} \sin(\phi) F_{UL}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{UL}^{\sin(2\phi)} \right] + S_{L} \left[ \sqrt{2\epsilon(1-\epsilon)} \cos(\phi) F_{UT}^{\cos(\phi)} \right] + \epsilon \sin(\phi - \phi_{S}) \left[ F_{UT}^{\sin(\phi - \phi_{S})} + \epsilon \sin(\phi - \phi_{S}) F_{UT}^{\sin(\phi - \phi_{S})} + \epsilon \sin(\phi - \phi_{S}) F_{UT}^{\sin(\phi - \phi_{S})} + \sqrt{2\epsilon(1+\epsilon)} \sin(\phi - \phi_{S}) F_{UT}^{\sin(\phi - \phi_{S})} \right] + S_{T} \lambda_{l} \left[ \sqrt{1-\epsilon^{2}} \cos(\phi - \phi_{S}) F_{UT}^{\sin(\phi - \phi_{S})} + \sqrt{2\epsilon(1-\epsilon)} \cos(\phi - \phi_{S}) F_{UT}^{\cos(\phi - \phi_{S})} \right] \right\}$$

$$P_{T} \lambda_{l} \left[ \sqrt{1-\epsilon^{2}} \cos(\phi - \phi_{S}) F_{UT}^{\cos(\phi - \phi_{S})} + \sqrt{2\epsilon(1-\epsilon)} \cos(\phi - \phi_{S}) F_{UT}^{\cos(\phi - \phi_{S})} \right] + \sqrt{2\epsilon(1-\epsilon)} \cos(2\phi - \phi_{S}) F_{UT}^{\cos(\phi - \phi_{S})} \right] \right\}$$

$$Describes correlation between quark transverse spin in a transverse ly pol. nucleon with the transverse spin in a transverse ly pol. nucleon with the transverse spin in a transverse ly pol. nucleon with transverse spin in a transverse ly pol. nucleon with transverse spin in a transverse spin i$$

quark

Т

\_

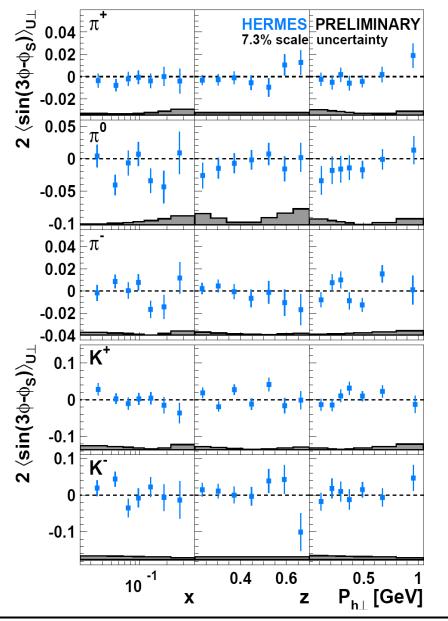
•

•••

т

----

### The sin( $3\phi - \phi_s$ ) amplitude $\propto h_{1T}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

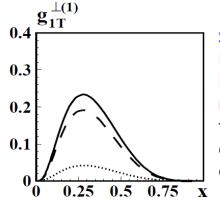


All amplitudes consistent with zero

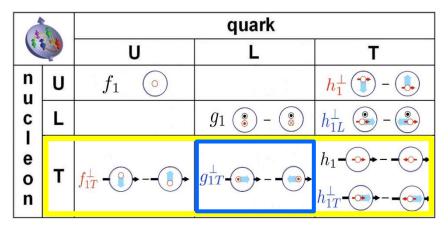
...suppressed by two powers of  $P_{h\perp}$  w.r.t. Collins and Sivers amplitudes

### The worm-gear $g_{1T}^{\perp}$

- The only TMD that is both chiral-even and naïve-T-even
- requires interference between wave funct. components that differ by 1 unit of OAM



S. Boffi et al. (2009) Phys. Rev. D 79 094012 Light cone constituent quark model flavorless dashed line: interf. L=0, L=1 dotted line: interf L=1, L=2



 $\Rightarrow$  related to quark orbital motion inside nucleons

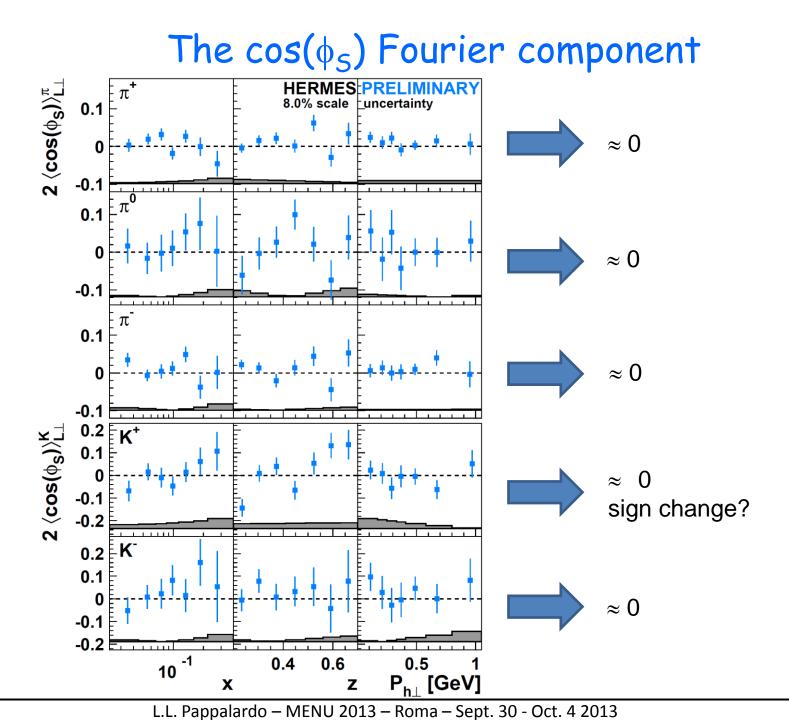
> Many models support simple relations among  $g_{1T}^{\perp}$  and other TMDs:

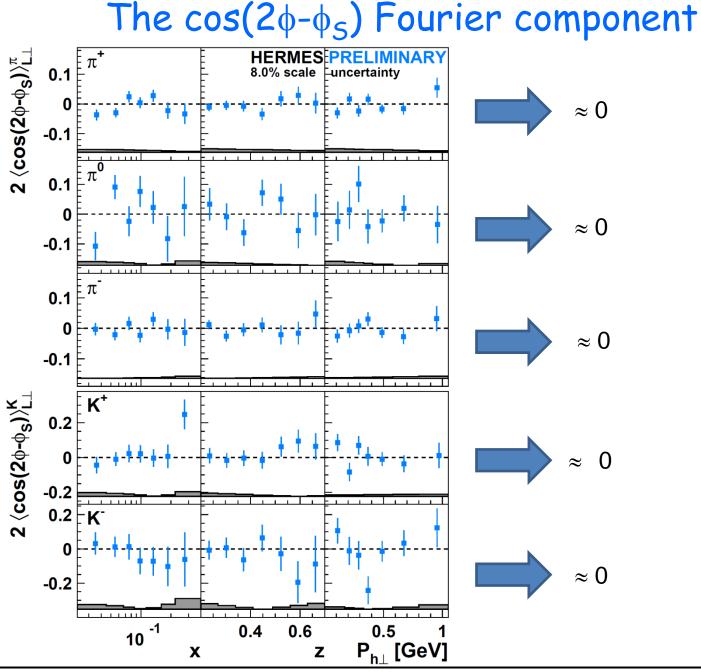
•  $g_{1T}^q = -h_{1L}^{\perp q}$  (also supported by Lattice QCD and first data)

$$g_{1T}^{q(1)}(x) \overset{^{WW-type}}{\approx} x \int_{x}^{1} \frac{dy}{y} g_{1}^{q}(y)$$
 (Wandzura-Wilczek appr.

# Probing $g_{1T}^{\perp}$ through Double Spin Asymmetries $F_{LT}^{\cos(\phi_h - \phi_S)} = \mathcal{C} \left[ \frac{\boldsymbol{h} \cdot \boldsymbol{p}_T}{M} g_{1T} D_1 \right]$ $F_{LT}^{\cos\phi_S} = \frac{2M}{O} \mathcal{C} \left\{ -\left(xg_T D_1 + \frac{M_h}{M}h_1 \frac{E}{z}\right) \right\}$ $+\frac{k_T \cdot p_T}{2MM_t} \left[ \left( x e_T H_1^{\perp} - \frac{M_h}{M} g_{1T} \frac{\dot{D}^{\perp}}{z} \right) + \left( x e_T^{\perp} H_1^{\perp} + \frac{M_h}{M} f_{1T}^{\perp} \frac{\dot{G}^{\perp}}{z} \right) \right] \right\}$ $F_{LT}^{\cos(2\phi_h - \phi_S)} = \frac{2M}{O} \mathcal{C} \left\{ -\frac{2(h \cdot p_T)^2 - p_T^2}{2M^2} \left( xg_T^{\perp} D_1 + \frac{M_h}{M} h_{1T}^{\perp} \frac{E}{z} \right) \right\}$ $+\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_{T}\right)\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_{T}\right)-\boldsymbol{k}_{T}\cdot\boldsymbol{p}_{T}}{2MM_{h}}\left[\left(xe_{T}H_{1}^{\perp}-\frac{M_{h}}{M}g_{1T}\frac{\tilde{D}^{\perp}}{z}\right)\right]$ $-\left(xe_T^{\perp}H_1^{\perp} + \frac{M_h}{M}f_{1T}^{\perp}\frac{G^{\perp}}{z}\right)\right]\Big\}$

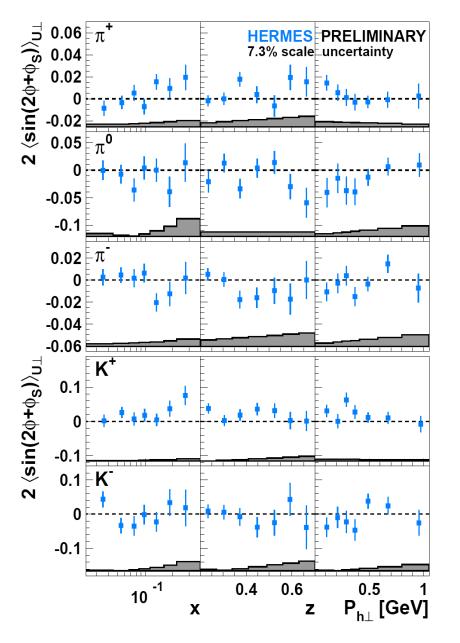
The simplest way to probe worm-gear  $g_{1T}^{\perp}$  is through the  $\cos(\phi - \phi_s)$  Fourier component



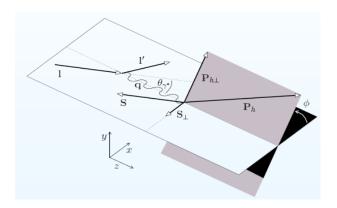


L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

### The sin( $2\phi + \phi_S$ ) Fourier component

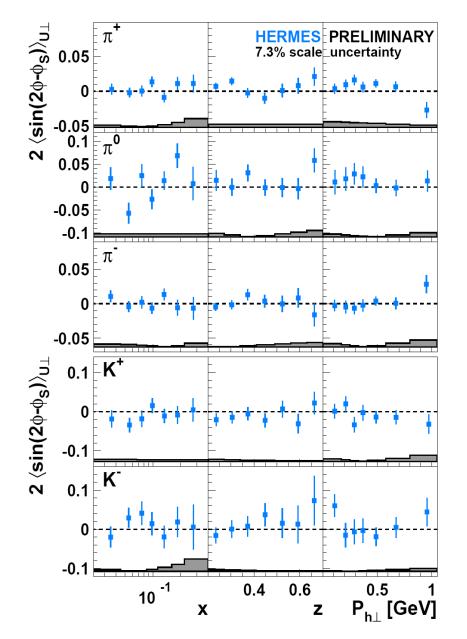


• arises solely from longitudinal (w.r.t. virtual photon direction) component of the target spin



- related to  $\langle \sin(2\phi) \rangle_{UL}$  Fourier comp:  $2 \langle \sin(2\phi + \phi_S) \rangle_{UT}^h \propto \frac{1}{2} \sin(\vartheta_{l\gamma^*}) 2 \langle \sin(2\phi) \rangle_{UL}^h$
- sensitive to worm-gear  $h_{1L}^\perp$
- ${\boldsymbol{\cdot}}$  suppressed by one power of  $P_{h\perp}$  w.r.t. Collins and Sivers amplitudes
- no significant signal observed (except maybe for K+)

### The subleading-twist $sin(2\phi-\phi_S)$ Fourier component



• sensitive to worm-gear  $g_{1T}^{\perp}$  , Pretzelosity and Sivers function:

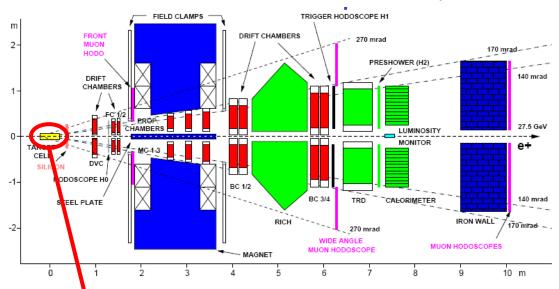
$$\begin{split} \propto & \mathcal{W}_1(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left( \mathbf{x} \mathbf{f_T^{\perp}} \mathbf{D}_1 - \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{h_{1T}^{\perp}} \frac{\tilde{\mathbf{H}}}{\mathbf{z}} \right) \\ & - \mathcal{W}_2(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left[ \left( \mathbf{x} \mathbf{h_T} \mathbf{H_1^{\perp}} + \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{g_{1T}} \frac{\tilde{\mathbf{G}^{\perp}}}{\mathbf{z}} \right) \right. \\ & \left. + \left( \mathbf{x} \mathbf{h_T^{\perp}} \mathbf{H_1^{\perp}} - \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{f_{1T}^{\perp}} \frac{\tilde{\mathbf{D}^{\perp}}}{\mathbf{z}} \right) \right] \end{split}$$

- $\bullet$  suppressed by one power of  $\mathsf{P}_{h\perp}$  w.r.t. Collins and Sivers amplitudes
- no significant non-zero signal observed

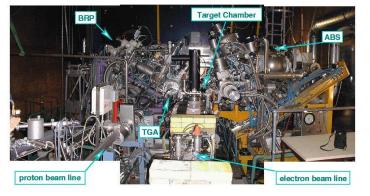
$$\begin{split} F_{LU} \sin \phi \\ F$$

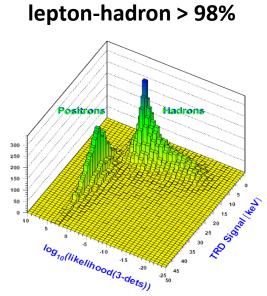
L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

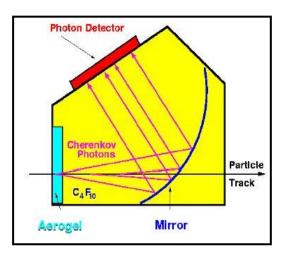
### The HERMES experiment at HERA



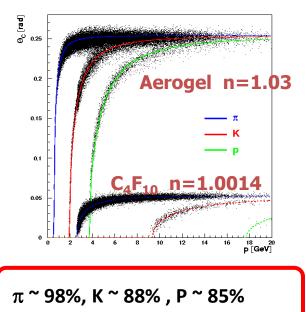
### TRD, Calorimeter, preshower, RICH:







#### hadron separation



## 2-hadron SIDIS results

#### Following formalism developed by Steve Gliske

Find details in

Transverse Target Moments of Dihadron Production in Semi-inclusive Deep Inelastic Scattering at HERMES S. Gliske, PhD thesis, University of Michigan, 2011

http://www-personal.umich.edu/~lorenzon/research/HERMES/PHDs/Gliske-PhD.pdf

#### A short digression on di-hadron fragmentation functions

**Standard definition** of di-hadron FF assume no polarization of final state hadrons (pseudo-scalar mesons) or define mixtures of certain partial waves as new FFs  $\frac{h |\ell_1, m_1\rangle}{h' |\ell_2, m_2\rangle}$ 

In the **new formalism there are only two di-hadron FFs**. Names and symbols are entirely associated with the quark spin, whereas the partial waves of the produced hadrons  $(|l_1m_1\rangle, |l_2m_2\rangle)$  are associated with partial waves of FFs.

The cross-section is identical to the ones in literature, the only difference is the interpretation of the FFs:

$$\begin{split} D_{1}^{|0,0\rangle} &= D_{1,OO} = \left(\frac{1}{4}D_{1,OO}^{s} + \frac{3}{4}D_{1,OO}^{p}\right) & H_{1}^{\perp|0,0\rangle} = H_{1,OO}^{\perp} = \frac{1}{4}H_{1,OO}^{\perp s} + \frac{3}{4}H_{1,OO}^{\perp p}, & H_{1}^{\perp|2,0\rangle} = \frac{1}{2}H_{1,LL}^{\perp}, \\ D_{1}^{|1,0\rangle} &= D_{1,OL}, & H_{1}^{\perp|1,1\rangle} = H_{1,OT}^{\perp} + \frac{|\mathbf{R}|}{|\mathbf{k}_{T}|}\bar{H}_{1,OT}^{\prec} = \frac{|\mathbf{R}|}{|\mathbf{k}_{T}|}H_{1,OT}^{\prec} & H_{1}^{\perp|2,-1\rangle} = \frac{1}{2}H_{1,LT}^{\perp}, \\ D_{1}^{|1,\pm1\rangle} &= D_{1,OT} \mp \frac{|\mathbf{k}_{T}| |\mathbf{R}|}{M_{h}^{2}}G_{1,OT}^{\perp}, & H_{1}^{\perp|1,0\rangle} = H_{1,OL}^{\perp} & H_{1,OT}^{\perp} = H_{1,OT}^{\perp}, \\ D_{1}^{|2,0\rangle} &= \frac{1}{2}D_{1,LL}, & H_{1}^{\perp|1,-1\rangle} = H_{1,OL}^{\perp} & H_{1}^{\perp|1,-1\rangle} = H_{1,OT}^{\perp}, \\ D_{1}^{|2,\pm1\rangle} &= \frac{1}{2}\left(D_{1,LT} \mp \frac{|\mathbf{k}_{T}| |\mathbf{R}|}{M_{h}^{2}}G_{1,LT}^{\perp}\right), & H_{1}^{\perp|2,2\rangle} = H_{1,TT}^{\perp} + \frac{|\mathbf{R}|}{|\mathbf{k}_{T}|}\bar{H}_{1,TT}^{\prec} = \frac{|\mathbf{R}|}{|\mathbf{k}_{T}|}H_{1,TT}^{\prec}, \\ D_{1}^{|2,\pm2\rangle} &= D_{1,TT} \mp \frac{1}{2}\frac{|\mathbf{k}_{T}| |\mathbf{R}|}{M_{h}^{2}}G_{1,TT}^{\perp}, & H_{1}^{\perp|2,1\rangle} = \frac{1}{2}H_{1,LT}^{\perp} + \frac{1}{2}\frac{|\mathbf{R}|}{|\mathbf{k}_{T}|}\bar{H}_{1,LT}^{\prec} = \frac{1}{2}\frac{|\mathbf{R}|}{|\mathbf{k}_{T}|}H_{1,LT}^{\bigstar}, \\ \end{split}$$

L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

#### The di-hadron SIDIS cross-section

$$d\sigma_{UT} = \frac{\alpha^2 M_h P_{h\perp}}{2\pi x y Q^2} \left( 1 + \frac{\gamma^2}{2x} \right) |S_{\perp}| \\ \times \sum_{\ell=0}^2 \sum_{m=-\ell}^{\ell} \left\{ A(x, y) \left[ P_{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S)) \right. \\ \left. \times \left( F_{UT,T}^{P_{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S)} + \epsilon F_{UT,L}^{P_{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S)} \right) \right] \right. \\ \left. + B(x, y) \left[ P_{\ell,m} \sin((1-m)\phi_h + m\phi_R + \phi_S) F_{UT}^{P_{\ell,m} \sin((1-m)\phi_h + m\phi_R + \phi_S)} \right. \\ \left. + P_{\ell,m} \sin((3-m)\phi_h + m\phi_R - \phi_S) F_{UT}^{P_{\ell,m} \sin((-m\phi_h + m\phi_R - \phi_S))} \right] \right. \\ \left. + V(x, y) \left[ P_{\ell,m} \sin((-m\phi_h + m\phi_R - \phi_S) F_{UT}^{P_{\ell,m} \sin((-m\phi_h + m\phi_R - \phi_S))} \right] \right\}.$$

#### l and m correspond to $|lm\rangle$ angular momentum state of the hadron

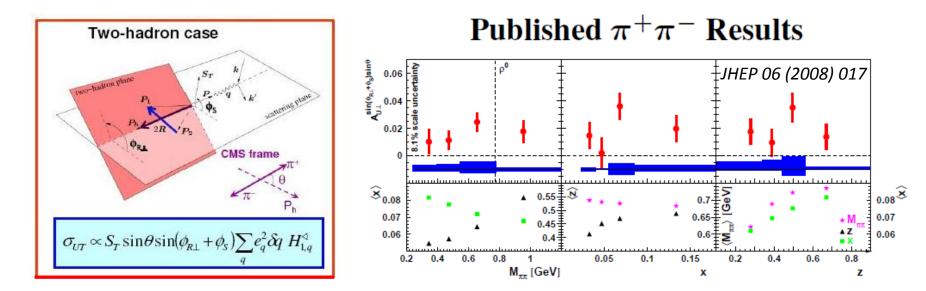
Considering all terms ( $d\sigma_{UU}$ ,  $d\sigma_{LU}$ ,  $d\sigma_{UL}$ ,  $d\sigma_{UL}$ ,  $d\sigma_{UT}$ ,  $d\sigma_{LT}$ ) there are **144 non-zero structure functions** at twist-3 level. The most known is

$$F_{UT}^{P_{\ell,m}\sin((1-m)\phi_h + m\phi_R + \phi_S)} = -\mathcal{I}\left[\frac{|k_T|}{M_h}\cos\left((m-1)\phi_h - \phi_p - m\phi_k\right)h_1H_1^{\perp|\ell,m\rangle}\right]$$

which for l = 1 and m = 1 reduces to the well known collinear  $F_{UT}^{\sin \vartheta \sin(\phi_R + \phi_S)}$  related to transversity

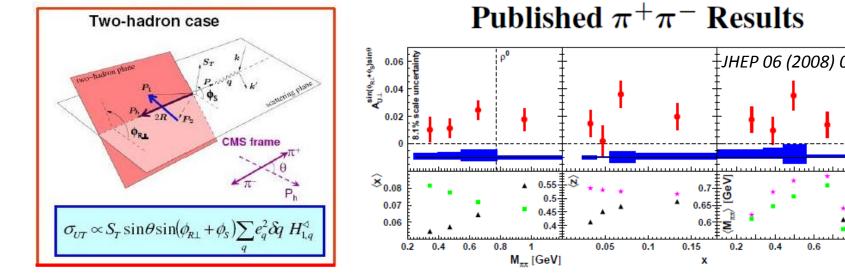
L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

### The di-hadron SIDIS cross-section

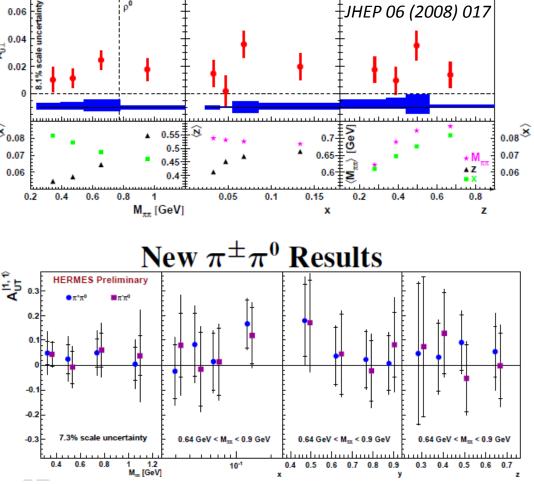


- independent way to access transversity
- Collinear  $\rightarrow$  no convolution integral
- significantly positive amplitudes
- 1<sup>st</sup> evidence of non zero dihadron FF
- limited statistical power (v.r.t. 1 hadron)

### The di-hadron SIDIS cross-section



- independent way to access transversity
- Collinear  $\rightarrow$  no convolution integral
- significantly positive amplitudes
- $1^{st}$  evidence of non zero dihadron FF
- limited statistical power (v.r.t. 1 hadron)
- signs are consistent for all  $\pi\pi$  species
- statistics much more limited for  $\pi^{\pm}\pi^{0}$
- despite uncertainties may still help to constrain global fits and may assist in u d flavor separation



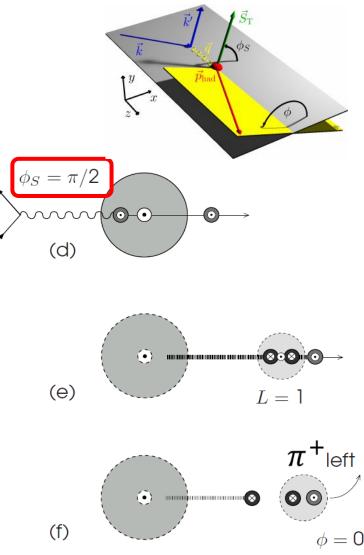
- New tracking, new PID, use of  $\phi_R$  rather than  $\phi_{R\perp}$
- Different fitting procedure and function
- Acceptance correction

### A short digression on the Lund/Artru string fragmentation model

(a phenomenological explanation of the Collins effect)

In the cross-section the Collins FF is always paired withy a distrib. function involving a transv. pol. quark.

- 1. Assume u quark and proton have (transverse) spin alligned in the direction  $\phi_S = \pi/2$ . The model assumes that the struck quark is initially connected with the remnant via a gluon-flux tube (string)
- 2. When the string breaks, a  $q\bar{q}$  pair is created with vacuum quantum numbers  $J^P = 0^+$ . The positive parity requires that the spins of q and  $\bar{q}$  are aligned, thus an OAM L = 1 has to compensate the spins
- 3. This OAM generates a transverse momentum of the produced pseudo-scalar meson (e.g.  $\pi^+$ ) and deflects the meson to the **left side** w.r.t. the struck quark direction, generating left-righ azimuthal asymmetries



### A short digression on the Lund/Artru string fragmentation model

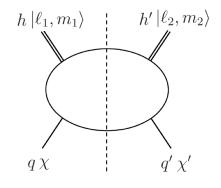
Relative to the proton transv. spin, the fragmenting quark can have spin parallel or antiparallel to  $\left|\frac{1}{2}, \pm \frac{1}{2}\right|$ Then combining the spins of the formed di-quark systems one can get:

$$\frac{1}{2} \otimes \frac{1}{2} = 1 \bigoplus 0 \implies \begin{cases} 1 \ spin \ 0 \ state \ |0, 0\rangle & 1 \ pseudo-scalar \ meson \ (PSM) \\ 3 \ spin \ 1 \ states \ \begin{cases} |1, 0\rangle & 1 \ Longitudinal \ VM \\ |1, \pm 1\rangle & 2 \ transvrse \ VM \end{cases}$$

**Lund/Artru prediction at the amplitude level**: the asymmetry for PSM has opposite sign to that for transversely polarized VM (left vs. right side), and the amplitude for  $|1, 0\rangle$  is 0

Lund/Artru model makes predictions for the individual di-hadrons, but the Collins function includes pairs of di-hadrons

→ to make predictions for the Collins function one needs to consider the cross-section level, i.e. the sum of contributing amplitudes times their complex conjugate



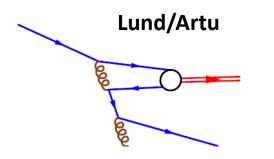
Using the Clebsch-Gordan algebra one obtains:  $|1, \pm 1\rangle |1, \pm 1\rangle \equiv |2, \pm 2\rangle$ 

**Lund/Artru prediction at the cross-section level**: the  $|2, \pm 2\rangle$  partial waves of the Collins func. for SIDIS VM production have the opposite sign as the respective PS Collins func.

### "gluon radiaton model" vs. Lund/Artru model

The Lund/Artru model only accounts for favored Collins fragmentation. An extension of the model (the **gluon radiation model**), elaborated by **S. Gliske** accounts for the disfavored case

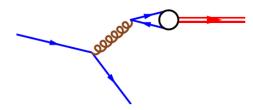
- Struck quark emits a gluon in such a way that most of its momentum is transferred to the gluon 1.
- The struck quark then becomes part of the remnant 2.
- The radiated gluon produces a  $q\bar{q}$  pair that eventually converts into a meson 3.
- For PSM the di-quark must interact further with the remnant to get the PSM quantum numbers. In 4. case of VM the di-quark directly forms the meson



- Di-quark has q.n. of vacuum
- Struck quark joins the anti-quark in the final state  $\rightarrow$  **favored fragment**.

**Prediction**: the  $|2, \pm 2\rangle$  partial wave of the Collins funct. for SIDIS VM production have the opposite sign as the respective PS Collins function





- Di-quark has q.n. of observed final state •
- Produced quark joins the anti-quark in the final state  $\rightarrow$  disfavored fragment.

**Prediction**: the disfavored  $|2, \pm 2\rangle$  Collins frag. also is expected to have opposite sign as the respective **PS** Collins function.

Models predict: fav = disfav for VM Data say: fav  $\cong$  - disfav for PSM (Collins  $\pi^+ vs. \pi^-$ )

L.L. Pappalardo – MENU 2013 – Roma – Sept. 30 - Oct. 4 2013

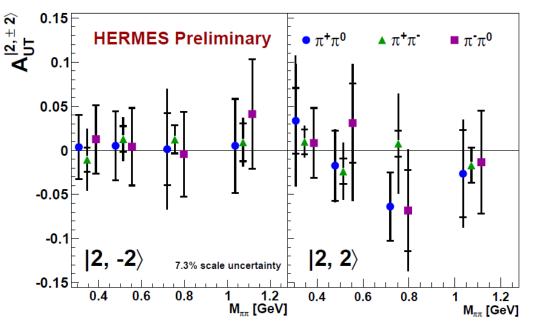
### ...and now let's look at the results

|        | Fragment. process                                                          | Fav/disfav | Deflection                       | Sign of amplitude      |                |
|--------|----------------------------------------------------------------------------|------------|----------------------------------|------------------------|----------------|
| $\int$ | $u  ightarrow \pi^+$                                                       | fav PSM    | left ( $\phi_h \to 0$ )          | >0 (Collins $\pi^+$ )  | ] from         |
|        | $u  ightarrow \pi^-$                                                       | disfav PSM | ight $(\phi_h \rightarrow \pi)$  | < 0 (Collins $\pi^-$ ) | ∫ data         |
| )      | $\boldsymbol{u} \rightarrow \boldsymbol{\rho}^+ \rightarrow \pi^+ \pi^0$   | fav VM     | right $(\phi_h \rightarrow \pi)$ | < 0                    | from           |
|        | $\boldsymbol{u} \rightarrow \boldsymbol{\rho}^- \rightarrow \pi^- \pi^0$   | disfav VM  | right $(\phi_h 	o \pi)$          | < 0                    | from<br>models |
| L      | $\boldsymbol{u}  ightarrow \boldsymbol{ ho}^{0}  ightarrow \pi^{+}\pi^{-}$ | mixed VM   | right $(\phi_h 	o \pi)$          | 0 or < 0               | J              |

u dominance

### ...and now let's look at the results

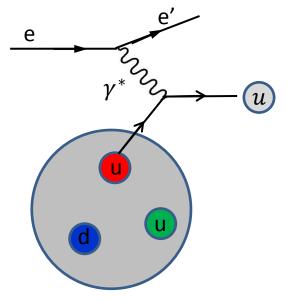
|        | Fragment. process                                                        | Fav/disfav | Deflection                       | Sign of amplitude      |                         |
|--------|--------------------------------------------------------------------------|------------|----------------------------------|------------------------|-------------------------|
| nce    | $m{u}  ightarrow m{\pi}^+$                                               | fav PSM    | left ( $\phi_h \rightarrow 0$ )  | > 0 (Collins $\pi^+$ ) | <pre> from   data</pre> |
| inan   | $u  ightarrow \pi^-$                                                     | disfav PSM | ight $(\phi_h 	o \pi)$           | < 0 (Collins $\pi^-$ ) |                         |
| u domi | $\boldsymbol{u} \rightarrow \boldsymbol{\rho}^+ \rightarrow \pi^+ \pi^0$ | fav VM     | right $(\phi_h \rightarrow \pi)$ | < 0                    | from                    |
| n d    | $\boldsymbol{u} \rightarrow \boldsymbol{\rho}^- \rightarrow \pi^- \pi^0$ | disfav VM  | right $(\phi_h \rightarrow \pi)$ | < 0                    | models                  |
| L      | $u \rightarrow \rho^0 \rightarrow \pi^+ \pi^-$                           | mixed VM   | right $(\phi_h \rightarrow \pi)$ | 0 or < 0               | J                       |



 $|2, -2\rangle$  consistent with zero for all flavors Not in contraddiction with models: if the transversity function causes the fragmenting quark to have positive polarization than Collins  $|2, -2\rangle$  must be zero as this partial wave requires fragmenting quark with negative polarization

#### $|2,+2\rangle$ consistent with model expect:

- No signal outside  $\rho$ -mass bin  $\rightarrow$  no non-resonant pion-pairs in p-wave
- Negative for  $\rho^{\pm}$  (model predictions)
- very small for  $\rho^0$  (consistent with small Collins  $\pi^0$ )



Assume scattering off a u quark

...in next 5 slides a *naive* representation of a fragmentation process that can lead to protons/antiprotons in the final states

