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Deeply Virtual Compton 
Scattering

e p ➝ e p γ

6Tuesday, 21 June 2011



Deeply Virtual Compton 
Scattering
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Generalised Parton 
Distributions

t - Mandelstam variable 
(squared momentum 
transfer to nucleon)

x - Fraction of nucleon’s 
longitudinal momentum 
carried by active quark

ξ - half the change in 
the longitudinal 
momentum of the 
active quark.

t
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GPD Physics
Four distributions of interest: H, E, H, E~ ~

H and E integrate over quark helicities
H and E are quark helicity difference distributions~ ~
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GPD Physics
Four distributions  of interest: H, E, H, E~ ~

H and E integrate over quark helicities
H and E are quark helicity difference distributions~ ~

Nucleon helicity inversion

Nucleon helicity conservation

Phys. Rev. Lett. 78:610, 1997

“Ji’s Relation”
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GPD Physics
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GPD Physics

H - unpolarised nucleon    H - polarised nucleon~
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GPD Physics

GPDs describe only the soft part of the interaction

Accessed via cross-sections and asymmetries: 
requires convolution with a hard scattering kernel

Results in “Compton Form Factors” accessible through 
DVCS, which have real and imaginary parts

H➞H     H➞H     E➞E     E➞E~~~ ~
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GPD Physics
GPDs describe only the soft part of the interaction

Accessed via cross-sections and asymmetries: 
requires convolution with a hard scattering kernel
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GPD Physics
GPDs describe only the soft part of the interaction

Accessed via cross-sections and asymmetries: 
requires convolution with a hard scattering kernel

Limited x access
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DVCS @ HERMES
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DVCS @ HERMES
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• 1 GeV2 <  Q2≣-q2  < 10 GeV2

• 0.03 < xB < 0.3

• 0 GeV2 < -t≣-(p-p’)2 < 0.7 GeV2

〈Q2〉≅ 2.4 GeV2

〈xB〉≅ 0.1

〈-t〉≅ 0.1 GeV2

DVCS @ HERMES
Forward 

spectrometer ⇒ 

measure 
asymmetries 

directly
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DVCS @ HERMES

BH/DVCS

MC Sum

Resonance Production

SIDIS Production

Exclusive π0 Production

Data
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DVCS @ HERMES

Wanted Signal

BH/DVCS from Δ, e.g
e Δ → e Δ γ → e p π0 γ

e p → e X γ

e p → e p π0

BH/DVCS

MC Sum

Resonance Production

SIDIS Production

Exclusive π0 Production

Data
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Beam Asymmetries
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Beam Asymmetries
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correlated to 
the difference 

in the CFF 
access?
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~

Long. Pol. target 
asymmetries 
access Im(H)

A. Airapetian et al, JHEP 06 (2010) 019

http://arxiv.org/abs/1004.0177

Target Asymmetries
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VGG Model:

Phys.Rev. D60 (1999) 094017

http://arxiv.org/abs/hep-ph/9905372
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Double Spin Asymmetries
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Caveat! Relatively 
large BH 

contribution to 
these asymmetries!

A. Airapetian et al, JHEP 06 (2010) 019

http://arxiv.org/abs/1004.0177
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Beam Asymmetries

Deuterium is governed by 
different GPDs - but the 
asymmetry data is not so 

different!
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A. Airapetian et al, Nucl. Phys. B 829 (2010) 1-27

30Tuesday, 21 June 2011

http://www.arxiv.org/abs/0911.0095
http://www.arxiv.org/abs/0911.0095


Target Asymmetries

http://www.arxiv.org/abs/1008.3996

A. Airapetian et al, Nucl. Phys. B842 (2011) 265-298

No good idea 
how to model 

long. pol. 
deuterium 

GPDs. Currently 
use a proton/

neutron hybrid

31Tuesday, 21 June 2011

http://www.arxiv.gorg/abs/1008.3996
http://www.arxiv.gorg/abs/1008.3996


Nuclear Mass 
Dependence

-0.05

0

0.05

0

0.05

0.1

0.15

1 10 10
2

A
Cco

s
 (

t <
 

t co
h.

)
A

Cco
s

 (
t >

 
t in

co
h.

)

nuclear mass number A

Nuclear-Binding models 
expected the DVCS 

asymmetry for nuclear 
targets to be ~2x that 

of the Hydrogen 
asymmetry.
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Nuclear Mass 
Dependence
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The data shows
 no significant difference 
between coherent and 

incoherent DVCS 
processes

http://arxiv.org/abs/0911.0091

A. Airpetian et al. Phys. Rev. C 81, 035202 (2010)
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• 1 GeV2 <  Q2≣-q2  < 10 GeV2

• 0.03 < xB < 0.3

• 0 GeV2 < -t≣-(p-p’)2 < 0.7 GeV2

〈Q2〉≅ 2.4 GeV2

〈xB〉≅ 0.1

〈-t〉≅ 0.1 GeV2

DVCS @ HERMES
Forward 

spectrometer ⇒ 

measure 
asymmetries 

directly
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DVCS @ HERMES
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Current DVCS Data
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Significant improvement in the purity of the signal

Sum
Track in the Recoil Detector

Kin. Fit says probably not DVCS
Kin. Fit says probably DVCS
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Current DVCS Data
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Current DVCS Data
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GPD Discovery
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http://arxiv.org/abs/0904.0458

To appear in Nucl. Phys. B (2010)

Postulate GPDs from
first principle models

New CFF Fit Result 
incorporating AUL moments

Kumerički and Müller

http://arxiv.org/abs/1005.4922
M. Guidal
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Future Data
COMPASS-II SPSC-I-238

Jefferson Lab PR-10-006

Measurements of the 
dvcs cross-section can 
help determine x and t 

entanglement

All four GPDs will be 
accessed in proposed 
measurements at JLab 

and COMPASS
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Meson Data
Meson data can also play a 

vital role in accessing 
GPDs - especially the 

“polarised” GPDs H and E!~~

Extraction of SDMES and 
Helicity Amplitude Ratios at 
HERMES for ρ mesons have 

shown that the handbag 
approximation is insufficient!
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Figure 3: Model predictions for the sin(φ − φS) Fourier amplitude
as a function of −t′. The curves represents predictions of GPD-

model calculations. The full circles show the values of A
sin(φ−φS)
UT,"

taken from Fig. 2. The error bars (bands) represent the statistical
(systematic) uncertainties. See text for details.

larger values of −t′, caused by a negative real part in Ẽ .
The dash-dotted curve arises from an alternative GPD ap-
proach [34], in which the imaginary part of H̃ becomes
negative while the real part of Ẽ remains positive at larger
values of −t′.

An attempt to evaluate the complete set of Fourier am-

plitudes (7), and in particular the value of Asin(φ−φS)
UT," , is

presented in [17]. In this model, the GPDs are calculated
in a similar way as in the models [15, 35], except that the
experimental value of the pion form factor Fπ is used. Here
a large non-pole contribution from Ẽ over-compensates the
pion-pole contribution leading to the zero-crossing behav-
ior of the amplitude as a function of −t′ (see dashed curve
in Fig. 3). This model appears to be qualitatively in agree-
ment with the data. However, within the large experimen-

tal uncertainty Asin(φ−φS)
UT," is also consistent with zero. A

vanishing Fourier amplitude in this model implies the dom-
inance (due to the pion pole) of Ẽ over H̃ at low −t′. This
is in agreement with the recent Hermes measurement of
the exclusive π+ cross section [22], which is well described
at −t′ = 0.1 GeV2 by a GPD model [35] based only on Ẽ
while neglecting the contribution of H̃ .

In summary, the Fourier amplitudes of the single-spin
azimuthal asymmetry are measured in exclusive electro-
production of π+ mesons on transversely polarized pro-
tons, for the first time. Within the experimental uncer-
tainties the amplitude of the sin(φ − φS) modulation is
found to be consistent with zero, thus excluding a pure
pion-pole contribution to the GPD Ẽ in leading-twist cal-
culations. This could also be an indication for the dom-
inance of Ẽ over the GPD H̃ at low −t′. The observed
amplitude of the sinφS modulation is large and positive
which implies the presence of a sizeable interference be-
tween contributions from longitudinal and transverse vir-
tual photons. A next-to-leading twist calculation as well
as knowledge of the contributions from transverse pho-

tons and their interference with longitudinal photons are
required for a description of the measurements.
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Meson Data

Throughout the majority of exclusive physics data 
from HERMES we see that there is very little 
difference between protons and deuterons!!! 
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Conclusions

• DVCS can be used to access information 
on Generalised Parton Distributions

• That information can tell us unique things 
about nucleon structure

• HERMES has the most diverse DVCS 
measurements of any experiment.
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Conclusions

• There is still no clear idea about how the 
nuclear medium modifies GPD-dependent 
behaviour. 

• Already, GPDs can be constrained - but 
there is much left to do!

• DVCS and DVMP both seem to show that 
there is little difference between proton 
and deuteron data!!!
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