New Results from the HERMES Recoil Detector

Andreas Mussgiller

for the HERMES collaboration

DPG Spring Meeting 13/03/2009, Munich

Exclusive DIS Measurements at HERMES

Without Recoil Detector

- Exclusivity via missing mass
- ~ I I% background

With Recoil Detector

- Improved exclusivity
- < 1% background</p>
- Improved t resolution

000

0

I

The HERMES Spectrometer (2006 - 2007)

- Recoil detector installed for the last two years of data taking at HERA
- 49.3M DIS events off Hydrogen target (21.5M DIS events 1996-2005)
- 12.4M DIS events off Deuterium target

The HERMES Recoil Detector

Low-energy protons

Momentum via sum of energy deposits •

125 MeV/c

8000

6000

10⁴

10³

10²

10

=

Low-energy protons

Momentum via sum of energy deposits

Medium-energy protons

• Momentum via dE/dx

8000 10⁴ Energy Deposit Inner Silicon [keV] -125 Mevic 6000 10³ 4000 10² 123 MeV/c 2000 10 200 MeVI Ξ 0^{L}_{0} 2000 8000 4000 6000 Energy Deposit Outer Silicon [keV]

 $125 \; \mathrm{MeV/c}$

 $145 \; \mathrm{MeV/c}$

Low-energy protons

• Momentum via sum of energy deposits

Medium-energy protons

• Momentum via dE/dx

High-energy particles (protons/pions)

Momentum via bending in magnetic field

125 MeV/c

145 MeV/c

p > 200 MeV/c

- Energy loss is taken into account for "long" tracks ($p>200~{
 m MeV/c}$)
 - Each track is reconstructed twice
 - Pion
 - Proton
 - Significantly improves momentum resolution

Particle Identification

- p/π^+ separation via energy deposits and parent distributions
- Information from up to 9 layers can be used (2 SSD, 4 SFT and 3 PD)
- $p<~pprox 0.6~{
 m GeV/c\,:\,}$ SSD & SFT
- $p>~pprox 0.6~{
 m GeV/c\,:\,}$ SSD & SFT & PD

Particle Identification

- p/π^+ separation via energy deposits and parent distributions
- Information from up to 9 layers can be used (2 SSD, 4 SFT and 3 PD)
- + $p<\,\approx 0.6~{\rm GeV/c\,{:}\,\rm SSD}$ & SFT
- $p > \approx 0.6~{
 m GeV/c}$: SSD & SFT & PD

Particle Identification Performance

- Extract parent distributions from reconstructed MC data
 - Same method as for real data
- Combine individual PID values: $PID_{total} = \sum PID_i$
- Proton: $PID_{total} > PID_{cut}$
- Pion: $PID_{total} < PID_{cut}$
- Use true particle ID from MC to study PID performance

SSD Proton Efficiency

- Drops in statistics related to acceptance holes and dead strips in other silicon layer
- $\langle \varepsilon \rangle > 99~\%$ for all 16 sensors

SFT Proton Efficiency

- Lower statistics and lower efficiency in first quadrant
- $\varphi < \pi/2$: $\langle \varepsilon \rangle \approx 98.5 \%$
- $\varphi > \pi/2$: $\langle \varepsilon \rangle \approx 99.5 \%$

A first look at DVCS with Recoil

- "Classic" style HERMES DVCS analysis
 - Scattered beam lepton and one photon in forward spectrometer

DVCS event candidate

- Calculate kinematics of recoiling proton
- Look for correlated track in RD
 - Use track with highest momentum and positive charge
 - No PID information used to select protons
 - $\Delta p = p_{\text{measured}} p_{\text{calc.}}$
 - $\Delta \phi = \phi_{\text{measured}} \phi_{\text{calc.}}$

A first look at DVCS with Recoil

- "Classic" style HERMES DVCS analysis
 - Scattered beam lepton and one photon in forward spectrometer

DVCS event candidate

- Calculate kinematics of recoiling proton
- Look for correlated track in RD
 - Use track with highest momentum and positive charge
 - No PID information used to select protons
 - $\Delta p = p_{\text{measured}} p_{\text{calc.}}$
 - $\Delta \phi = \phi_{\text{measured}} \phi_{\text{calc.}}$
 - $|\Delta p| < 1 \text{ GeV/c}$

A first look at DVCS with Recoil

- Correlated track in recoil detector exists
- $|\Delta p| < 1 \text{ GeV/c}$
- Good agreement between Data and MC

Summary and Outlook

- Great progress in understanding the detector
 - All three sub-detectors calibrated
 - PID and Proton efficiencies look good
- First look at physics using Recoil Detector tracks looks promising
 - Deeply Virtual Compton Scattering
 - Exclusive ρ^0 production
- Exclusive physics
 - Improve event selection
 - Use PID to select recoiling proton
 - Include single hits in inner SSD to extend to even lower t
- Extract neutron structure function via spectator proton tagging
- Refinement of SSD energy calibration
- Fine-tuning of track reconstruction

