

Recent Measurements of the $cos(n\phi_h)$ Azimuthal Modulations of the

Unpolarized Deep Inelastic Scattering Cross-section

Rebecca Lamb

at

University of Illinois on behalf of the HERMES collaboration

Theory & Experimental Introduction Procedure cos(\$\Phi\$h) Results & Model cos(2\$\Phi\$h) Results & 3 Models

Rebecca Lamb

Spin, orbital motion, quarks, and protons

The LO, subleading twist (3) unpolarized SIDIS cross section

$$\frac{d\sigma}{dx \, dy \, dz \, dP_{h\perp}^2 \, d\phi_h} = 2\pi \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left[F_{UU,T} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} + \epsilon\cos(2\phi_h)F_{UU}^{\cos(2\phi_h)}\right]$$

$$F_{UU,T} = \mathcal{C}[f_1 D_1]$$

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{k}_T}{M_h} \frac{p_T^2}{M^2} h_1^{\perp} H_1^{\perp} - \frac{\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{p}_T}{M} f_1 D_1 + \dots \right]$$

$$F_{UU}^{\cos(2\phi_h)} = \mathcal{C} \left[-\frac{2(\mathbf{\hat{P}_{h\perp}} \cdot \mathbf{k}_T)(\mathbf{\hat{P}_{h\perp}} \cdot \mathbf{p}_T) - \mathbf{k}_T \cdot \mathbf{p}_T}{MM_h} h_1^{\perp} H_1^{\perp} \right]$$

The LO, subleading twist (3)
unpolarized SIDIS cross section

$$\frac{d\sigma}{dx \, dy \, dz \, dP_{h\perp}^2 \, d\phi_h} = 2\pi \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left[F_{UU,T} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \epsilon \cos(2\phi_h) F_{UU}^{\cos(2\phi_h)}\right]$$

$$F_{UU,T} = C[f_1D_1]$$

$$F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\frac{\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{k}_T}{M_h} \frac{p_T^2}{M^2} h_1^{\perp} H_1^{\perp} - \frac{\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{p}_T}{M} f_1 D_1 + ...\right]$$
leading twist
Boer-Mulders

$$F_{UU}^{\cos(2\phi_h)} = C \left[-\frac{2(\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{k}_T)(\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{p}_T) - \mathbf{k}_T \cdot \mathbf{p}_T}{MM_h} \int_{\mathbf{D}}^{\mathbf{h}_{\mathbf{h}} + \mathbf{P}_T} f_1 H_1^{\perp}\right]$$

CIPANP San Diego, CA May 29, 2009

3

I The unpolarized SIDIS cross section

$$\frac{d\sigma}{dx \, dy \, dz \, dP_{h\perp}^2 \, d\phi_h} = 2\pi \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left[F_{UU,T} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} + \epsilon\cos(2\phi_h)F_{UU}^{\cos(2\phi_h)}\right]$$

 $= A + B\cos(\phi_h) + C\cos(2\phi_h)$

$$2\langle \cos(\phi_h) \rangle = 2 \frac{\int \cos(\phi_h) d^5 \sigma}{\int d^5 \sigma} = \frac{B}{A}$$
$$2\langle \cos(2\phi_h) \rangle = 2 \frac{\int \cos(2\phi_h) d^5 \sigma}{\int d^5 \sigma} = \frac{C}{A}$$

The HERA Accelerator at DESY Hamburg Germany

27.6 GeV e[±] beam Rebecca Lamb

6

Procedure

Analysis Challenge!

Monte Carlo: Generated in 4π Measured inside acceptance Our acceptance and **QED** radiation qenerate cos(n ϕ_h) moments which depend on x, y, z, P_{h⊥}, and so does PHYSICS!

1

Azimuthal Moments due to QED Initial and Final State Radiation

ISR

1

$$q = k - k'$$

$$w = k' - k'_{meas}$$

$$q_{meas} = k - k'_{meas} = k - k' + w = q + w$$

FSR

$$q = k - k'$$

$$w = k_{meas} - k$$

$$q_{meas} = k_{meas} - k' = k + w - k' = q + w$$

1

CIPANP San Diego, CA May 29, 2009

9

Five Dimensional Binning

- A model independent correction can be made with
 - bins in all 5 independent variables (max # for SIDIS!)
 - infinitely small bins sizes
 - no smearing in from outside DIS region (background)
- Given limited statistics, we have bin edges:

$\mathbf{x} =$	0.023	0.042	0.078	0.145	0.27	1
y =	0.3	0.45	0.6	0.7	0.85	
z =	0.2	0.3	0.45	0.6	0.75	1
$P_{h\perp} =$	0.05	0.2	0.35	0.5	0.75	1
$\phi =$	12 bins					

400 kinematic bins * 12 ϕ_h bins = 4800 bins

- Highest z bin not included in projections vs other variables
- With the additional DIS cuts
 - ◆ Q² > 1 GeV
 - W² > 10 GeV

CIPANP San Diego, CA May 29, 2009

Rebecca Lamb

Monte Carlo test

- One MC production as "data" <cos(φ_h)>=Cahn Model
- A different MC production used to unfold $\langle \cos(\phi_h) \rangle = 0$

Unfolded in 5D
 Cahn Model in 4π
 Unfolded in 1D -> Inacurate!!

Rebecca Lamb

1

Monte Carlo test

- One MC production as "data" <cos(φ_h)>=Cahn Model
- A different MC production used to unfold $\langle \cos(\phi_h) \rangle = 0$

Unfolded in 5D
 Cahn Model in 4π
 Unfolded in 1D -> Inacurate!!

Rebecca Lamb

1

<cos(ϕ_h)> Results and Interpretation interaction Cahn+Boer-Mulders dependent terms $\left(\frac{2M}{Q}\mathcal{C}\left[-\frac{\hat{\mathbf{P}}_{\mathbf{h}\perp}\cdot\mathbf{k}_{T}}{M_{h}}\frac{p_{T}^{2}}{M^{2}}h_{1}^{\perp}H_{1}^{\perp}-\frac{\hat{\mathbf{P}}_{\mathbf{h}\perp}\cdot\mathbf{p}_{T}}{M}\right]$ $F_{UU}^{\cos\phi_h}$ f_1D_1

Cos(\u03c6h)> Results and Interpretation

Cos(\u03c6h)> Results and Interpretation

Data:

- H and D results very similar
- + h+ and h- results differ

Questions:

• What can we learn about intrinsic $\langle k_T \rangle$ of quarks?

$$\begin{array}{l} \text{Cahn+Boer-Mulders} \\ F_{UU}^{\cos\phi_h} \\ F_{UU}^{\cos\phi_h} \end{array} = \left(\underbrace{2M}_{Q} \mathcal{C} \left[-\frac{\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{k}_T}{M_h} \underbrace{p_T^2}_{M^2} \underbrace{h_1^\perp H_1^\perp}_{M^2} - \underbrace{\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{p}_T}_{M} \underbrace{f_1 D_1}_{L} + \ldots \right] \\ F_{UU}^{\cos\phi_h} \\ F_{UU}^{\cos\phi_h} \end{array} = \left(\underbrace{2M}_{Q} \mathcal{C} \left[-\frac{\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{k}_T}{M_h} \underbrace{p_T^2}_{M^2} \underbrace{h_1^\perp H_1^\perp}_{M^2} - \underbrace{\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{p}_T}_{M} \underbrace{f_1 D_1}_{L} + \ldots \right] \\ F_{UU}^{\cos\phi_h} \\ F_{U}^{\cos\phi_h} \\ F_{UU}^{\cos\phi_h} \\ F_{$$

$(\cos(2\phi_h))$ Results and Interpretation

Rebecca Lamb

\mathbb{I} <cos(2 ϕ_h)> Results and Interpretation

B. Zhang et al., Phys.Rev.D78:034035,2008

$I < cos(2\phi_h)$ > Results and Interpretation

Data:

- H and D results very similar
- h+ ~ 0, slightly negative
- h- clearly positive

Questions:

- Is $\langle \cos(2\phi) \rangle$ a clean probe of h_1^{\perp} ?
- What is the relative sign of $h_1^{\perp u}$ and $h_1^{\perp d}$?

$$\begin{array}{l} \textbf{Boer-Mulders} \\ F_{UU}^{\cos(2\phi_h)} &= \mathcal{C} \left[-\frac{2(\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{k}_T)(\hat{\mathbf{P}}_{\mathbf{h}\perp} \cdot \mathbf{p}_T) - \mathbf{k}_T \cdot \mathbf{p}_T}{MM_h} h_1^{\perp} H_1^{\perp} \right] \\ +X \frac{1}{Q^2} f_1 D_1 \\ \text{twist-4 Cahn} \end{array}$$

IVIUIU

Model 1

L. P. Gamberg et al., Phys Rev D67:071504, 2003

L. P. Gamberg and G. R. Goldstein, arXiv:0708.0324, 2007

Rebecca Lamb

I<cos(2φ_h)>: Model 1

Gamberg et al.

L. P. Gamberg et al., Phys Rev D67:071504, 2003

L. P. Gamberg and G. R. Goldstein, arXiv:0708.0324, 2007

Same sign u and d Boer-Mulders function from a diquark spectator model

Collins calculated in the spectator framework A. Bacchetta, et al., Phys. Lett. B 659, 234 (2008).

Rebecca Lamb

Ι<cos(2φ_h)>: Model 1 Gamberg et al.

L. P. Gamberg et al., Phys Rev D67:071504, 2003

L. P. Gamberg and G. R. Goldstein, arXiv:0708.0324, 2007

Ι<cos(2φ_h)>: Model 1 Gamberg et al.

L. P. Gamberg et al., Phys Rev D67:071504, 2003

L. P. Gamberg and G. R. Goldstein, arXiv:0708.0324, 2007

Ι<cos(2φ_h)>: Model 1 Gamberg et al.

L. P. Gamberg et al., Phys Rev D67:071504, 2003

L. P. Gamberg and G. R. Goldstein, arXiv:0708.0324, 2007

hermes

Model 2

V. Barone et al. Phys.Rev.D78:045022,2008

Rebecca Lamb

Barone et al.

hermes

V. Barone et al. Phys.Rev.D78:045022,2008

Same sign u and d Boer-Mulders function taken as a scaled Sivers function

anomalous tensor anomalous magnetic moment magnetic moment $h_1^{\perp q} \sim -\kappa_T^q \qquad f_{1T}^{\perp q} \sim -\kappa^q$ $h_1^{\perp q}(x, k_T^2) = \frac{\kappa_T^q}{\kappa^q} f_{1T}^{\perp q}(x, k_T^2)$ $h_1^{\perp u} = 1.80 f_{1T}^{\perp u},$ $h_1^{\perp d} = -0.94 f_{1T}^{\perp d}$

Sivers fit to SSA data taken from M. Anselmino et al., Phys. Rev. D 72, 094007 (2005).

Collins parameterization to SIDIS and e+e- from M. Anselmino et al., Phys. Rev. D 75, 054032 (2007).

I
cos(2\phi_h)>: Model 2

Barone et al.

hermes

V. Barone et al. Phys.Rev.D78:045022,2008

Same sign u and d Boer-Mulders function taken as a scaled Sivers function

anomalous tensor anomalous magnetic moment magnetic moment $h_1^{\perp q} \sim -\kappa_T^q \qquad f_{1T}^{\perp q} \sim -\kappa^q$ $h_1^{\perp q}(x, k_T^2) = \frac{\kappa_T^q}{\kappa^q} f_{1T}^{\perp q}(x, k_T^2)$ $h_1^{\perp u} = 1.80 f_{1T}^{\perp u},$ $h_1^{\perp d} = -0.94 f_{1T}^{\perp d}$

Sivers fit to SSA data taken from M. Anselmino et al., Phys. Rev. D 72, 094007 (2005).

Collins parameterization to SIDIS and e+e- from M. Anselmino et al., Phys. Rev. D 75, 054032 (2007).

PLUS Cahn twist-4 contribution

Rebecca Lamb

I<cos(2φ_h)>: Model 2

I<cos(2φ_h)>: Model 2

I<cos(2φ_h)>: Model 2

Barone et al.

V. Barone, S. Melis and A. Prokudin preliminary results

NEW work to update the twist-4 Cahn contribution "standard" values $\langle k_{\perp}^2 \rangle = 0.25 \text{ GeV}^2 \langle p_{\perp}^2 \rangle = 0.2 \text{ GeV}^2$

【<cos(2φh)>: Model 2

Barone et al.

V. Barone, S. Melis and A. Prokudin preliminary results

NEW work to update the twist-4 Cahn contribution $\langle k_{\perp}^2 \rangle = 0.18 \text{ GeV}^2 \langle p_{\perp}^2 \rangle = 0.42 \cdot (1-z)^{0.54} \cdot z^{0.37} \text{ GeV}^2$

More work needs to be done to understand $\langle k_T^2 \rangle$ before BM can be cleanly extracted

Rebecca Lamb

Model 3

B. Zhang et al., Phys.Rev.D78:034035,2008

Rebecca Lamb

I<cos(2φ_h)>: Model 3 Zhang et al.

B. Zhang et al., Phys.Rev.D78:034035,2008

 $h_1^{\perp,u}(x) = \omega H_u x^c (1-x) f_1^u(x),$

 $h_1^{\perp,d}(x) = \omega H_d x^c (1-x) f_1^d(x),$

 $h_1^{\perp,\bar{u}}(x) = \frac{1}{\omega} H_{\bar{u}} x^c (1-x) f_1^{\bar{u}}(x),$

 $h_1^{\perp,\bar{d}}(x) = \frac{1}{\omega} H_{\bar{d}} x^c (1-x) f_1^{\bar{d}}(x),$

Boer-Mulders extracted from unpolarized p+D Drell-Yan data

$$h_1^{\perp,q}(x,\mathbf{k}_T^2) = h_1^{\perp,q}(x) \frac{\exp(-\mathbf{k}_T^2/p_{bm}^2)}{\pi p_{bm}^2},$$

	Set I	Set II
H_u	3.99	4.44
H_d	3.83	-2.97
$H_{\bar{u}}$	0.91	4.68
H_{d}	-0.96	4.98
p_{bm}^2	0.161	0.165
с	0.45	0.82
$\chi^2/d.o.f.$	0.79	0.79

Set II:

Boer-Mulders extracted assuming $h_1^{\perp,u}$ and $h_1^{\perp,d}$ of **opposite signs**

-> results in large h_1^{\perp} for antiquarks

Collins parameterization to SIDIS and e+e- from M. Anselmino et al., Phys. Rev. D 75, 054032 (2007). f₁ MRST2001 LO D₁ Kretzer

Rebecca Lamb

Rebecca Lamb

CIPANP San Diego, CA May 29, 2009

Cos(2\u03c6h)>: Hydrogen vs Deuterium

in the (roughly implemented) Zhang model

Caveats of this rough version of the model

- PDFs
 - k_T dependence not included
 - Different unpolarized PDFs used
- FFs
 - Full Collins functions not included
 - Just a constant ratio of favored/disfavored used
- Overall normalization missing
- Extra(??) -1 needed to get sign
 - ν <-> <cos(2φ)> ??
 - sign of Collins??

$$\frac{\int H_{1,\text{disfav}}^{\perp}}{\int H_{1,\text{fav}}^{\perp}} = -1$$
$$\eta \equiv \frac{\int D_{1,\text{disfav}}}{\int D_{1,\text{fav}}} \simeq 0.35$$

$$\langle \cos(2\phi) \rangle_{H}^{\pi^{+}} \sim rac{4\delta u_{v} - \delta d_{v}}{4u + \eta d + 4\eta \bar{u} + d\bar{l}} \ \langle \cos(2\phi) \rangle_{H}^{\pi^{-}} \sim rac{-4\delta u_{v} + \delta d_{v}}{4\eta u + d + 4\bar{u} + \eta d\bar{l}}$$

I lsina.

$$\begin{aligned} \langle \cos(2\phi) \rangle_D^{\pi^+} &\sim \frac{3\delta u_v + 3\delta d_v}{(4+\eta)(u+d) + (4\eta+1)(\bar{u}+\bar{d})} \\ \langle \cos(2\phi) \rangle_D^{\pi^-} &\sim \frac{-3\delta u_v - 3\delta d_v}{(4\eta+1)(u+d) + (4+\eta)(\bar{u}+\bar{d})} \end{aligned}$$

33

I<cos(2\phi)>: Hydrogen vs Deuterium

in the (roughly implemented) Zhang model

So given that we are doing something reasonable for H, let's calculate D...

What's next?

- Our dual-radiator RICH has improved software for beautifully identified pions, kaons, and protons
- This analysis: ~1.5M SIDIS on both H and D
 Additional ~5M SIDIS on both H and D available
- Novel 1D projections that
 - Reach to higher $P_{h\perp}$
 - Strive to disentangle our $x Q^2$ dependence

Conclusions

NEW HERMES results!

- <cos(ϕ_h)> and <cos($2\phi_h$)> on Hydrogen and Deuterium
- ◆ <cos(\u03c6h)>
 - h+ ≠ h-
 - $\langle k_T \rangle^u \neq \langle k_T \rangle^d$??
 - $(h_1^{\perp} \otimes H_1^{\perp})^{\pi_+} \neq (h_1^{\perp} \otimes H_1^{\perp})^{\pi_-}$ significant??
- <cos(2φh)>
 - Sensitive to Boer-Mulders DF
 - Twist-4 Cahn term must be taken into account!!
 - Models for D essential in determining u / d relative sign
- Cahn and BM both contribute to both $\langle cos(\phi_h) \rangle$ and $\langle cos(2\phi_h) \rangle$
- Comprehensive models needed (BM+Cahn, H&D, <cos(φh)>&<cos(2φh)>
- Challenge: reconcile HERMES and COMPASS results
 - Different kinematic range?

Backup Slides

hermes

Existing Measurements

1

Existing Measurements

Existing Measurements cos(2φh)

Existing Measurements cos(φ_h)

Existing Measurements

Semi-Inclusive Deep Inelastic Scattering

1