Exclusive Electroproduction of Pions and Vector Mesons at HERMES

SPIN 2004, Trieste, Italy

Armine Rostomyan on behalf of the HERMES collaboration

(YerPhI/DESY)

Generalized Parton Distributions (GPDs)

- parametrization of the nucleon structure
- description of *inclusive* and *hard exclusive* processes
- related to the sum of *quark spins* and *quark angular momenta*
- transverse distribution of quarks inside the nucleon

Factorization theorem for meson production

- Quantum numbers of final state selects different GPDs
 - * vector mesons (ρ , ω , ϕ): unpolarized GPDs H E
 - * pseudoscalar mesons (π , η): polarized GPDs HE
- Factorization for longitudinal photons only

•
$$\frac{d\sigma_L}{dt} \rightarrow \frac{1}{Q^6}$$
 $\frac{\sigma_T}{\sigma_L} \sim \frac{1}{Q^2}$

The spectrometer

- fixed target experiment
- forward spectrometer
- no recoil detection

Exclusivity for $ep \rightarrow e'\pi^+(n)$

• π^- yield was used to subtract the non exclusive background

 exclusive peak centered at the nucleon mass

• MC is based on GPD model

- SPIN 2004, Trieste, Italy - page 5

Cross-section determination

$$\sigma^{\gamma^* p \to \pi^+ n}(x, Q^2) = \frac{N_\pi^{excl}}{L\Delta x \Delta Q^2 \Gamma(\langle x \rangle, \langle Q^2 \rangle) \kappa(x, Q^2)}$$

 $\rightarrow \kappa(x, Q^2)$: detection probability was calculated using VGG exclusive MC -*Vanderhaeghen,Guichon,Guidal (1999)*-

Cross-section determination

$$\sigma^{\gamma^* p \to \pi^+ n}(x, Q^2) = \frac{N_\pi^{excl}}{L\Delta x \Delta Q^2 \Gamma(\langle x \rangle, \langle Q^2 \rangle) \kappa(x, Q^2)}$$

 $\rightarrow \kappa(x, Q^2)$: detection probability was calculated using VGG exclusive MC -*Vanderhaeghen,Guichon,Guidal (1999)*-

-Armine Rostomyan-

Cross-section determination

-Armine Rostomyan-

Cross-section: Q^2 dependence for different \boldsymbol{x} ranges

Cross-section: Q^2 dependence for different x ranges

 $\sigma_{tot} = \sigma_T + \epsilon \sigma_L$

- L/T separation not possible
- BUT σ_T suppressed by $1/Q^2$
- for HERMES kinematics: $0.80 < \epsilon < 0.96$

 σ_L dominates at large Q^2

Cross-section: Q^2 dependence for different x ranges

 $\sigma_{tot} = \sigma_T + \epsilon \sigma_L$

- L/T separation not possible
- BUT σ_T suppressed by $1/Q^2$
- for HERMES kinematics: $0.80 < \epsilon < 0.96$

 σ_L dominates at large Q^2

Cross-section: Q^2 dependence for different x ranges

 $\sigma_{tot} = \sigma_T + \epsilon \sigma_L$

- L/T separation not possible
- **BUT** σ_T suppressed by $1/Q^2$
- for HERMES kinematics: $0.80 < \epsilon < 0.96$

 σ_L dominates at large Q^2

Q^2 dependence and theoretical expectations

Factorization theorem: $\sigma_L \rightarrow 1/Q^6$

 $\rightarrow Q^2$ dependence is in agreement with theoretical expectation

Kinematics

 $\rho^0 \to \pi^+ \pi^- \Longrightarrow$

Kinematics

hermes

-Armine Rostomyan-

Kinematics

 \rightarrow good determination of exclusive channels

→ background well described by Monte Carlo

$$\sigma_L/\sigma_T$$
 separation

• GPD calculations related to longitudinal component of cross section (σ_L).

$$\sigma_{L} = \frac{R}{1 + \epsilon R} \sigma_{\gamma^{*}p \to Vp}$$

$$R = \frac{\sigma_{L}}{\sigma_{T}}$$

$$\epsilon - \text{polarization of } \gamma^{*}$$

• assuming SCHC

$$R = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

$$r_{00}^{04} \rightarrow W(\cos\theta)$$

$$\sigma_L/\sigma_T$$
 separation

• GPD calculations related to longitudinal component of cross section (σ_L).

$$\sigma_{L} = \frac{R}{1 + \epsilon R} \sigma_{\gamma^{*}p \to Vp}$$

$$R = \frac{\sigma_{L}}{\sigma_{T}}$$

$$\epsilon - \text{polarization of } \gamma^{*}$$

• assuming SCHC

$$R = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

$$r_{00}^{04} \to W(\cos\theta)$$

$$\sigma_L/\sigma_T$$
 separation

• GPD calculations related to longitudinal component of cross section (σ_L).

$$\sigma_{L} = \frac{R}{1 + \epsilon R} \sigma_{\gamma^{*}p \to Vp}$$
$$R = \frac{\sigma_{L}}{\sigma_{T}}$$

$$\epsilon~-~$$
 polarization of γ

• assuming SCHC

$$R = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

$$r_{00}^{04} \to W(\cos\theta)$$

Future...

2002-2007: run with a transversely polarized target 2002-2004: we already have

Transverse spin asymmetry of exclusive π^+ and ρ^0

 $ep \rightarrow e\pi^+ n$

0.7

-Frankfurt, Polyakov, Strikman, Vanderhaeghen (2000)-

 $\sigma:|S_T|sin\Phi \widetilde{\widetilde{EH}}$

-Goeke, Polyakov, Vanderhaeghen (2001)-

•
$$A_{UT}: E$$

• $E \rightarrow 2J^u + J^d$

- the scaling region is reached at low Q^2
- not sensitive to NLO corrections

Outlook

- The cross section for exclusive π^+ and ρ^0 was extracted and compared to model calculations
- Future analysis:
 - \circledast transverse target spin asymmetry of exclusive π^+ and ρ^0
- With recoil detector it will be possible to increase the statistics starting from 2005

