

SIDIS Dihadron Production at HERMES

S. Gliske

High Energy Physics Division Argonne National Laboratory HERMES and STAR Collaborations

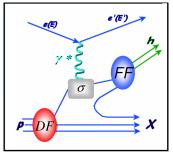
INFN Ferrara Seminar Ferrara, Italy February 8th, 2012

Outline

- I. Motivation and Background
- II. The TMDGen Monte Carlo Generator
- III. The HERMES Detector
- IV. Acceptance Correction
 - V. Analysis
- VI. Systematic Studies

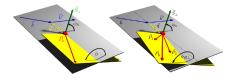
Motivation and Background

SIDIS Production of Hadrons



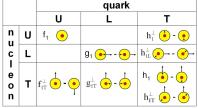
- ► The SIDIS hadron & dihadron processes $e + p \rightarrow e' + h + X,$ $e + p \rightarrow e' + h_1 + h_2 + X.$
- ► Factorization theorem implies $\sigma^{ep \to ehX} = \sum_{q} DF \otimes \sigma^{eq \to eq} \otimes FF$
- Access integrals of DFs and FFs through Fourier moments of φ_h, φ_S, φ_R & Legendre polynomials in cos θ.

$$\begin{split} \phi_h &= \operatorname{signum} \left[\left(k \times P_h \right) \cdot q \right] \arccos \frac{\left(q \times k \right) \cdot \left(q \times P_h \right)}{\left| q \times k \right| \left| q \times P_h \right|}, \\ \phi_S &= \operatorname{signum} \left[\left(k \times S \right) \cdot q \right] \arccos \frac{\left(q \times k \right) \cdot \left(q \times S \right)}{\left| q \times k \right| \left| q \times S \right|}, \\ \phi_R &= \operatorname{signum} \left[\left(R \times P_h \right) \cdot n \right] \arccos \frac{\left(q \times k \right) \cdot \left(P_h \times R \right)}{\left| q \times k \right| \left| P_h \times R \right|}. \end{split}$$



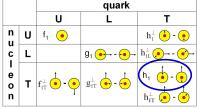
Distribution Functions (DFs)

- Distribution functions are categorized according to quark and target nucleon polarization.
- Each function depends on intrinsic transverse momenta and the flavor of the quark (anti-quark).
- Leading twist distribution functions include
 - ► Unpolarized *f*₁
 - Helicity distribution g_1 or Δq
 - Transversity h_1 or δq
 - Boer-Mulders h_1^{\perp}
 - Polarized quarks in unpolarized nucleon
 - Sivers function f_{1T}^{\perp}
 - ► For K^+K^- and ϕ production, f_{1T}^{\perp} related to gluon orbital angular momentum.
 - Pretzelocity h_{1T}^{\perp}
 - Nonzero h_{1T}^{\perp} equivalent to non-spherical proton.
 - Wormgear g_{1T}^{\perp} , h_{1L}^{\perp}
 - Quarks and nucleon polarized in different bases.

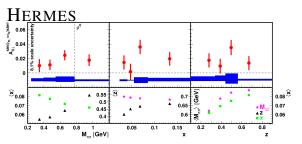


Distribution Functions (DFs)

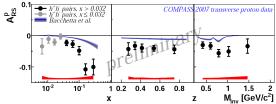
- Distribution functions are categorized according to quark and target nucleon polarization.
- Each function depends on intrinsic transverse momenta and the flavor of the quark (anti-quark).
- Leading twist distribution functions include
 - Unpolarized f_1
 - Helicity distribution g_1 or Δq
 - Transversity h_1 or δq
 - Boer-Mulders h_1^{\perp}
 - Polarized quarks in unpolarized nucleon
 - Sivers function f_{1T}^{\perp}
 - ► For K^+K^- and ϕ production, f_{1T}^{\perp} related to gluon orbital angular momentum.
 - Pretzelocity h_{1T}^{\perp}
 - Nonzero h_{1T}^{\perp} equivalent to non-spherical proton.
 - Wormgear $g_{1T}^{\perp}, h_{1L}^{\perp}$
 - Quarks and nucleon polarized in different bases.



Collinear Dihadron Results



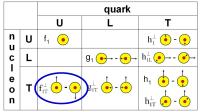
COMPASS



- Measure asymmetry $2 \langle \sin(\phi_{R+} + \phi_S) \sin \theta \rangle$ in
 - $\pi^+\pi^-$ pair production.
- ► Related to h₁ DF (transversity) and sp interference FF H^{ζsp}_{1,UT}.
- Model based on HERMES results by Bacchetta, *et al.* (PRD 74:114007, 2006)
- Prediction for COMPASS results yields too small of an asymmetry. (arXiv:0907.0961v1)
- ► Both experiments indicate non-zero h_1 and $H_{1,UT}^{\checkmark,sp}$.

Distribution Functions (DFs)

- Distribution functions are categorized according to quark and target nucleon polarization.
- Each function depends on intrinsic transverse momenta and the flavor of the quark (anti-quark).



- Leading twist distribution functions include
 - ► Unpolarized *f*₁
 - Helicity distribution g_1 or Δq
 - Transversity h_1 or δq
 - Boer-Mulders h_1^{\perp}
 - Polarized quarks in unpolarized nucleon
 - Sivers function f_{1T}^{\perp}
 - ► For K^+K^- and ϕ production, f_{1T}^{\perp} related to gluon orbital angular momentum.
 - Pretzelocity h_{1T}^{\perp}
 - Nonzero h_{1T}^{\perp} equivalent to non-spherical proton.
 - Wormgear g_{1T}^{\perp} , h_{1L}^{\perp}
 - Quarks and nucleon polarized in different bases.

Brodsky, Gardner arXiv:hep-ph/0608219v2

SLAC-PUB-12062 UK/TP-06-08 August 2006

Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon •

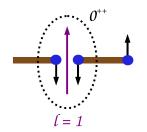
Stanley J. Brodsky

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

Susan Gardner Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055

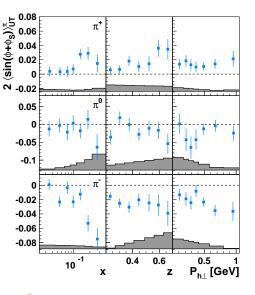
We have argued that the L_g mechanism is small and cannot always produce a leading hadron, so that one is left to ponder how current empirical constraints can be bettered. It strikes us as efficacious to study SSAs associated with produced hadrons of non-valence quark content. The $\gamma^*g \to s\overline{s} \to K^-K^+ + X$ reaction is one such possibility. In principle, one can trace the SSA of the K^-K^+ to the gluon's orbital angular momentum L_g . One can also consider the $\gamma^*g \to s\overline{s} \to \phi + X$ reaction: the SSA in ϕ production. Both reactions are important tests for the L_g mechanism, since the gluon contributions of the two nucleons to the SSA add. One can consider these

Lund/Artru String Fragmentation Model



- Model fragmentation as the breaking of a gluon flux tube between the struck quark and the remnant.
- Assume that the flux tube breaks into a $q\bar{q}$ pair with quantum numbers equal to the vacuum.
- Expect mesons overlapping with $|\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle, |\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle$ states to prefer "quark left".
 - $|0,0\rangle =$ pseudo-scalar mesons.
 - $|1,0\rangle =$ longitudinally polarized vector mesons.
- Expect mesons overlapping with $|\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle, |\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle$ states to prefer "quark right".
 - $|1,\pm 1\rangle$ = transversely polarized vector mesons.
- For the two ρ_T's, "the Collins function" should have opposite sign to that for π
 For ρ_L, "the Collins function" is zero.

HERMES Collins Moments for Pions



- Final result published in January
 A. Airapetian et al, Phys. Lett. B 693
 (2010) 11-16. arXiv:1006.4221 (hep-ex)
- Significant π^- asymmetry implies $H_1^{\perp,disf} \approx -H_1^{\perp,fav}$
- Pions have small, but non-zero asymmetry
- Expect Collins moments negative for ρ^{\pm} .
- Would like uncertainties on dihadron moments on the order of 0.02.

Items Which Required Additional Development

- Acceptance/smearing correction method
 - ► Standard methods cannot handle 4 angular and 5 kinematic variables.
- Testing acceptance correction requires non-collinear SIDIS Monte Carlo generator at sub-leading twist.
 - Must simulate azimuthal dependence of cross section for systematic studies.
 - Cannot use polynomial fits to the data as was done for pseudo-scalar analysis.
- Generator requires
 - ► Non-collinear cross section at sub-leading twist.
 - ► Non-collinear fragmentation models.
- ► Would also like to understand "Which term in the cross section includes 'the Collins function' for ρ_L , ρ_T ?"
 - Use alternate partial wave expansion

The TMDGen Generator

New TMDGEN Generator

- No previous Monte Carlo generator has TMD dihadron production with full angular dependence
- Method
 - Integrates cross section per flavor to determine "quark branching ratios"
 - Throw a flavor type according to ratios
 - Throw kinematic/angular variables by evaluating cross section
 - Can use weights or acceptance rejection
 - Full TMD simulation: each event has specific $|\boldsymbol{p}_T|$, ϕ_p , $|\boldsymbol{k}_T|$, ϕ_k values
 - Includes both pseudo-scalar and dihadron SIDIS cross sections
- Guiding plans

Δ

- Extreme flexibility
 - Allow many models for fragmentation and distribution functions
 - ► Various final states: pseudo-scalars, vector mesons, hadron pairs, etc.
 - Output options & connecting to analysis chains of various experiments
 - Minimize dependencies on other libraries
- ► Full flavor and transverse momentum dependence.

► Current C++ package considered stable and allows further expansion

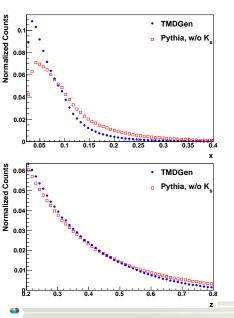
Can be useful for both experimentalists and theorists.

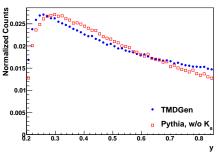
Available Models

Distribution Functions	Model Identifier		
f_1	CTEQ		
f_1	LHAPDF		
f_1	BCR08		
f_1	GRV98		
<i>g</i> 1	GRSV2000		
$f_{1T},h_{1T}^{\perp},h_1$	Torino Group		
$f_1, g_1, g_{1L}, g_{1T}, f_{1T}, h_1, h_1^{\perp}, h_{1T}^{\perp}$	Pavia Spectator Model		

Frag. Functions	Final State	Model Identifier
D_1	pseudo-scalar	fDSS
D_1	pseudo-scalar	Kretzer
D_1, H_1^{\perp}	dihadron	Spectator Model
D_1, H_1^{\perp}	dihadron	Set given partial wave proportional
		to any other partial wave

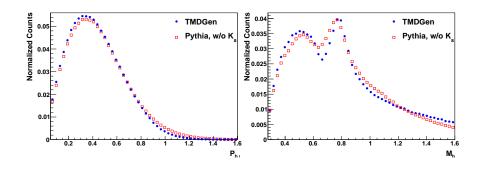
$\pi^+\pi^0$ Kinematic Distributions, p.1





- Close agreement for x, y, z distributions.
- Main discrepancy in x—may be due to imbalance in the flavor contributions, or Q² effects.
- Similar results for other ππ and KK dihadrons.

$\pi^+\pi^0$ Kinematic Distributions, p.2



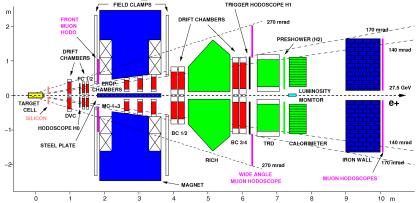
- Fairly good agreement in both $P_{h\perp}$ and M_h distributions.
- Note: some discrepancies in full 5D kinematic, but PYTHIA also doesn't match data in full 5D

HERMES Detector

The HERA Storage Ring

- ► 6.3 km (3.9 mi) circumference
- ▶ Protons were at 920 GeV and electrons/positrons at 27.6 GeV
- ► Electrons and positrons were polarized due to the Sokolov-Ternov effect
- Operational from 1990 to 2007.

The HERMES Spectrometer



BeamLong. pol. e^{\pm} at 27.6 GeVLep.-Had. Sep.High efficiency $\approx 98\%$ TargetTrans. pol. H ($\approx 75\%$)Low contamination (<2%)</th>Log. pol. H ($\approx 85\%$)Hadron PIDSeparates $\pi^{\pm}, K^{\pm}, p, \bar{p}$ Unpol. H,D,Ne,Kr,...with momenta in 2-15 GeV

4

Acceptance Effects

► HERMES detector/experiment has many strengths

- Excellent PID using a RICH
- Many combinations of target and beam polarization
- Both electron and positron beams
- Accurate geometry for Monte Carlo simulations
- One major setback though...
 - Somewhat limited angular acceptance
 - ► Effect of angular acceptance can mimic physics signal, especially when combined with radiative effects.

Acceptance Correction Method

Smearing/Acceptance Effects

- Let $\mathbf{x}^{(T)}$ be true value of variables, $\mathbf{x}^{(R)}$ the reconstructed values
- ► A conditional probability $p(\mathbf{x}^{(R)} | \mathbf{x}^{(T)})$ relates the true PDF $p(\mathbf{x}^{(T)})$ with the PDF of the reconstructed variables, $p(\mathbf{x}^{(R)})$.
- Specific relation given by Fredholm integral equation

$$p\left(\mathbf{x}^{(R)}\right) = \eta \int d^{D} \mathbf{x}^{(T)} p\left(\mathbf{x}^{(R)} \middle| \mathbf{x}^{(T)}\right) p\left(\mathbf{x}^{(T)}\right),$$

$$\frac{1}{\eta} = \int d^{D} \mathbf{x}^{(R)} d^{D} \mathbf{x}^{(T)} p\left(\mathbf{x}^{(R)} \middle| \mathbf{x}^{(T)}\right) p\left(\mathbf{x}^{(T)}\right).$$

• Can rewrite in terms of a smearing operator

$$S\left[g(\boldsymbol{x}^{(T)})\right] = \int d^{D}\boldsymbol{x}^{(T)} p\left(\boldsymbol{x}^{(R)} \middle| \boldsymbol{x}^{(T)}\right) g\left(\boldsymbol{x}^{(T)}\right).$$

Fredholm equation is simply

$$p\left(\boldsymbol{x}^{(R)}\right) = S\left[\eta p\left(\boldsymbol{x}^{(T)}\right)\right].$$

Solution with Finite Basis and Integrated Squared Error

Restrict to finite basis

$$\eta p\left(\mathbf{x}^{(T)}\right) = \sum_{i} \alpha_{i} f_{i}\left(\mathbf{x}^{(T)}\right),$$
$$p\left(\mathbf{x}^{(R)} \middle| \mathbf{x}^{(T)}\right) = \sum_{i,j} \Gamma_{i,j} f_{i}\left(\mathbf{x}^{(R)}\right) f_{j}\left(\mathbf{x}^{(T)}\right).$$

► Determine parameters by minimizing the integrated squared error (ISE)

$$ISE_{1} = \int d^{D} \mathbf{x}^{(R)} d^{D} \mathbf{x}^{(T)} \left[p\left(\mathbf{x}^{(R)} \middle| \mathbf{x}^{(T)} \right) - \sum_{i,j} \Gamma_{i,j} f_{i}(\mathbf{x}^{(R)}) f_{j}(\mathbf{x}^{(T)}) \right]^{2},$$

$$ISE_{2} = \int d^{D} \mathbf{x}^{(R)} \left\{ p\left(\mathbf{x}^{(R)} \right) - \sum_{i} \alpha_{i} S\left[f_{i}\left(\mathbf{x}^{(T)} \right) \right] \right\}^{2}.$$

Analytic Solution

► Define/compute

$$F_{i,j} = \int d^{D} \mathbf{x}^{(T)} f_{i} \left(\mathbf{x}^{(T)} \right) f_{j} \left(\mathbf{x}^{(T)} \right),$$

$$B_{i,j} = \int d^{D} \mathbf{x}^{(R)} d^{D} \mathbf{x}^{(T)} p \left(\mathbf{x}^{(R)} \middle| \mathbf{x}^{(T)} \right) f_{i} \left(\mathbf{x}^{(R)} \right) f_{j} \left(\mathbf{x}^{(T)} \right),$$

$$= V \int d^{D} \mathbf{x}^{(R)} d^{D} \mathbf{x}^{(T)} p_{MC} \left(\mathbf{x}^{(T)}, \mathbf{x}^{(R)} \right) f_{i} \left(\mathbf{x}^{(R)} \right) f_{j} \left(\mathbf{x}^{(T)} \right),$$

$$b_{i} = \int d^{D} \mathbf{x}^{(R)} p \left(\mathbf{x}^{(R)} \right) f_{i} \left(\mathbf{x}^{(R)} \right).$$

► ISEs reduce to the matrix equation

$$B^T F^{-1} B \boldsymbol{\alpha} = B^T F^{-1} \boldsymbol{b}$$

- Assuming *B* is invertible, this reduces to $B\alpha = b$.
- Note: the least squares solution, ignoring smearing, is $F\alpha = b$.

Numeric Solution

► The quantities can be computed as

$$b_{i} = \frac{V}{N_{R}} \sum_{k=1}^{N_{R}} f_{i}\left(\mathbf{x}^{(R,k)}\right),$$

$$B_{i,j} = \frac{V^{3}}{N_{MC}} \sum_{k=1}^{N_{MC}} f_{i}\left(\mathbf{x}^{(R,k)}\right) f_{j}\left(\mathbf{x}^{(T,k)}\right).$$

- Use standard methods to solve $B\alpha = b$.
- One is simply unfolding in the parameter space.

Uncertainty Calculation

► Define

$$\begin{aligned} \left(C^{\boldsymbol{b}} \right)_{j,j'} &= \frac{\delta_{j,j'}}{N_R - 1} \left[\frac{V^2}{N_R} \sum_{k=1}^{N_R} f_i^2 \left(\boldsymbol{x}^{(R,k)} \right) - (b_i)^2 \right], \\ \left(C^B \right)_{j,k;j',k'} &= \frac{\delta_{j,j'} \delta_{k,k'}}{N_\epsilon - 1} \left[\frac{V^6}{N_\epsilon} \sum_{k=1}^{N_\epsilon} f_j^2 \left(\boldsymbol{x}^{(M,k)} \right) f_k^2 \left(\boldsymbol{x}^{(T,k)} \right) - (B_{j,k})^2 \right], \\ C_{i,i'}^{(B)} &= \sum_{j,j'} C_{i,j;i',j'}^{(B)} \alpha_j \alpha_{j'}. \end{aligned}$$

• The uncertainty on α is then

$$C^{(\alpha)} = B^{-1}C^{(b)}B^{-T} + B^{-1}C^{\prime(B)}B^{-T}$$

• One could consider a third term $(B^T F^{-1} B)^{-1}$, the Hessian of the matrix eq.

Numeric studies show this term is not a meaningful estimate of the uncertainty, and that it can be neglected.

Alternate Derivation

- Again, assume that $p(\mathbf{x}^{(R)} | \mathbf{x}^{(T)}) = Vp(\mathbf{x}^{(R)}, \mathbf{x}^{(T)}).$
- Substitute $\eta p\left(\mathbf{x}^{(T)}\right) = \sum_{i} \alpha_{i} f_{i}\left(\mathbf{x}^{(T)}\right)$ into the Fredholm integral equation:

$$p\left(\boldsymbol{x}^{(R)}\right) = V \sum_{i} \alpha_{i} \int d^{D} \boldsymbol{x}^{(T)} p_{MC}\left(\boldsymbol{x}^{(T)}, \boldsymbol{x}^{(R)}\right) f_{i}\left(\boldsymbol{x}^{(T)}\right).$$

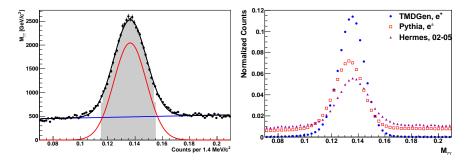
► Applying the operator $\int d^D \mathbf{x}^{(R)} f_j(\mathbf{x}^{(R)})$ to both sides yields $\int d^D \mathbf{x}^{(R)} f_j(\mathbf{x}^{(R)}) p(\mathbf{x}^{(R)}) = V \sum_i \alpha_i \int d^D \mathbf{x}^{(R)} d^D \mathbf{x}^{(T)} p_{MC}(\mathbf{x}^{(T)}, \mathbf{x}^{(R)}) f_i(\mathbf{x}^{(T)}),$

▶ Using the definitions of *b* and *B*, this reduces to

$$b = B\alpha$$
.

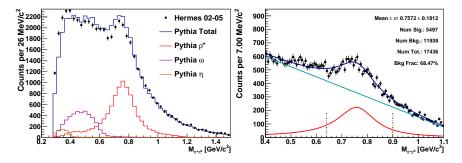
HERMES Dihadron Analysis

Neutral Pion Reconstruction



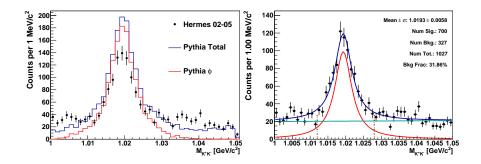
- Invariant mass spectrum of $\gamma\gamma$ -system for $\pi^+\gamma\gamma$ events.
- ► $E_{\text{clus.}} = \alpha E_{\gamma}$, with α equal to 0.97, 0.9255 and 0.95 for HERMES, PYTHIA, and TMDGEN data, respectively.
- Central value of the peak is sufficiently close to the accepted value.
- Width of the peak is reflection of the resolution of the spectrometer for the π^0 mass.

Mass Distribution: $\pi^+\pi^0$



- ► Left panel: comparison with PYTHIA, highlighting various process decaying into $\pi^+\pi^-$ pair.
- Right panel: Hermes 02-05 data, fit to Breit-Wigner plus linear background to estimate background fraction.
- ► High background fraction, but hope only VMs in *pp*-wave.
- Distributions for other $\pi\pi$ dihadron effectively the same.

Mass Distribution: K^+K^-



- ► Lower signal, but much lower background fraction.
- ▶ No other mesons decaying into K^+K^- within mass window.
- ► Clean access to strange quark distribution and fragmentation functions.

Fitting Functions

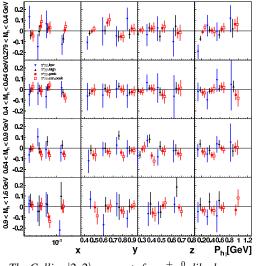
- Perform angular fit in each kinematic bin
- Main focus is on transverse target Collins and Sivers moments
- ► Fit function includes 41 angular moments plus constant term
 - Unpolarized moments, twist-2 and twist-3 (24 moments)
 - The transverse target Collins and Sivers moments (18 moments)

$$f(\cos \vartheta, \phi_h, \phi_R, \phi_S) = \sum_{\ell=0}^{2} \left[\sum_{m=0}^{\ell} a_1^{|\ell,m|} P_{\ell,m} \cos(m\phi_h - m\phi_R) + \sum_{m=-\ell}^{\ell} \left(a_2^{|\ell,m|} P_{\ell,m} \cos((2-m)\phi_h + m\phi_R) + a_3^{|\ell,m|} P_{\ell,m} \cos((1-m)\phi_h + m\phi_R) \right) + \sum_{m=-\ell}^{\ell} \left(b_1^{|\ell,m|} P_{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S) + b_2^{|\ell,m|} P_{\ell,m} \sin((1-m)\phi_h + m\phi_R + \phi_S) \right) \right]$$

- Constrain $a_1^{|0,0\rangle} = 1$.
- Fit parameters are integrals of structure functions, which are integrals of distribution and fragmentation functions

$$a_1^{|\ell,m
angle} \propto f_1 D_1^{|\ell,m
angle} a_3^{|\ell,m
angle} \propto f_1 D_1^{|\ell,m
angle}, h_1^{\perp} H_1^{\perp|\ell,m
angle} = b_1^{|\ell,m
angle} \propto f_1 D_1^{|\ell,m
angle} d_2^{|\ell,m
angle} + b_1^{|\ell,m
angle} \propto f_1 D_1^{|\ell,m
angle} d_2^{|\ell,m
angle} + b_2^{|\ell,m
angle} \propto h_1 H_1^{\perp|\ell,m
angle}$$

Non-resonant Photon Pairs



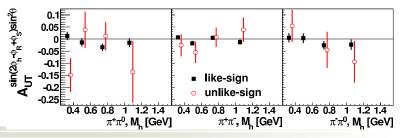
The Collins $|2,2\rangle$ moments for $\pi^+\pi^0$ dihadrons

- Exists about a 25% background of non-resonant photon pairs
- Data from higher and lower $M_{\gamma\gamma}$ regions are fit to interpolate the background asymmetry in the π^0 peak region.
- The effect of subtracting this background is not large

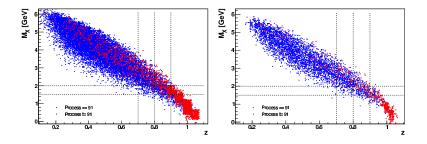
Charge Symmetric Background

- Some candidate DIS leptons actually from processes generating e^+e^- pairs.
- Can use data where lepton has opposite charge as the beam to estimate bkg.
- ► Little data, but within statistical uncertainty, the background asymmetry appears negligible.

Year	π^+	π^0	$\pi^+\pi^-$		$\pi^-\pi^0$		K^+K^-	
2002	222	5.0%	827	3.8%	145	4.3%	2	1.1%
	120		477		-			
2004	762	5.0%	2849	3.9%	487	4.2%	4	0.7%
			7346					
Total	2712	4.9%	11499	4.3%	2373	5.5%	25	1.2%



Exclusive Background



- Left panel, $\pi^+\pi^-$; right panel, K^+K^- .
- Comparison based on PYTHIA production tuned to HERMES kinematics, within HERMES acceptance
- Good background suppression ($\approx 3.5\%$) by limiting z < 0.8
- Missing mass (M_X) cut reduces statistics, but does not reduce background fraction

Vector Meson Fraction

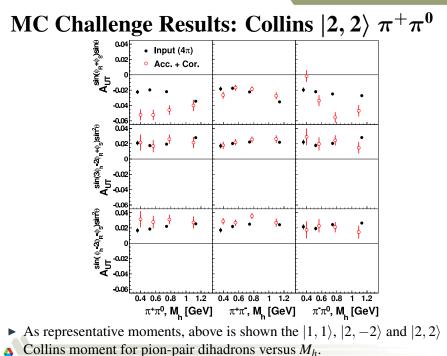
Dihadron	Est. VM Stats.	Bkg. Frac.
$\pi^+\pi^0$	5497	68.5%
$\pi^+\pi^-$	10846	85.4%
$\pi^{-}\pi^{0}$	2774	77.9%
K^+K^-	700	31.9%

- ► Some partial waves, such as |2, ±2⟩, are a simple sum of vector meson plus non-vector meson contributions
- Other partial waves involving interference, such as |1,1>, cannot be separated into a sum.
- ► For the |2, ±2⟩ partial waves, one can consider isolating the vector meson contribution using the estimated background fractions.
- ► The fractions are determined by a Breit-Wigner plus linear background fit to the *M_h* distribution.

Systematic Studies

Monte Carlo Challenge

- ► TMDGEN, with no angular moments, is used to estimate the acceptance (matrix *B*).
- ▶ PYTHIA in acceptance plus RADGEN is used to act as data (vector *b*).
 - Weights are introduced using the angular portion of the cross section from TMDGEN.
- Also weight born, 4π TMDGEN in the same manner, to determine true parameter values.
- The use of different generators insures no "lucky" cancellations due to the cross sections being identical
- Systematic uncertainty is estimated as half the difference between the results from MLE fit of weighted PYTHIA 4π data and from acceptance correction fit of weighted PYTHIA (w/ RADGEN) within acceptance.



MC Challenge Results: $\pi^+\pi^0 \chi^2/ndf$ Statistics

	χ^2/ndf per Binning Option				
Moment	M_h	M_h -x	M_h -y	M_h -z	$M_h - P_h \perp$
Sivers $ 0, 0\rangle$	10.257	6.154	5.898	6.199	6.886
Sivers $ 1, -1\rangle$	8.649	2.064	1.872	2.681	3.024
Sivers $ 1, 0\rangle$	38.928	48.047	27.105	59.303	16.620
Sivers $ 1, 1\rangle$	1.072	1.729	2.029	1.393	1.549
Sivers $ 2, -2\rangle$	8.710	1.312	2.256	1.948	2.242
Sivers $ 2, -1\rangle$	14.156	7.346	5.586	11.712	5.233
Sivers $ 2,0\rangle$	191.392	81.096	46.959	106.730	80.811
Sivers $ 2,1\rangle$	9.984	1.987	6.877	4.140	4.155
Sivers $ 2, 2\rangle$	1.746	0.987	0.993	1.409	1.403
Collins $ 0, 0\rangle$	12.917	5.923	9.475	24.251	6.392
Collins $ 1, -1\rangle$	0.806	1.851	1.135	2.099	2.088
Collins $ 1, 0\rangle$	47.455	31.840	37.332	45.703	20.431
Collins $ 1, 1\rangle$	16.554	2.497	3.843	4.319	3.131
Collins $ 2, -2\rangle$	0.605	1.011	0.465	0.569	1.363
Collins $ 2, -1\rangle$	12.480	2.694	2.772	14.441	3.673
Collins $ 2, 0\rangle$	33.781	32.088	28.132	174.760	16.624
Collins $ 2, 1\rangle$	3.693	2.127	2.664	10.043	1.161
Collins $ 2, 2\rangle$	1.596	0.740	1.227	1.364	1.048

- As a representative case, above are the χ^2/ndf statistics for $\pi^+\pi^0$ dihadrons.
- \blacktriangleright Some moments reconstructed well, such as the Collins $|2,\pm2
 angle$
- Moments with m = 0 generally reconstructed quite poorly.
 - Acceptance is worse for $|\cos \vartheta|$ near 1.

Year Dependence

- Data with both positron (2002-2004) and electron (2005) beams is combined for final sample
- Though SIDIS cross section invariant with respect to beam charge, systematic effects are not.
- ► Study 1
 - Compare the results from the combined fit versus results from combining the separate fit results
 - Very close agreement
- ► Study 2
 - Compare corrected 2002-2004 results with corrected 2005 results
 - Agreement not as good.
 - Systematic uncertainty is estimated as half the uncertainty needed to reduce the χ^2 per moment per bin to 1.

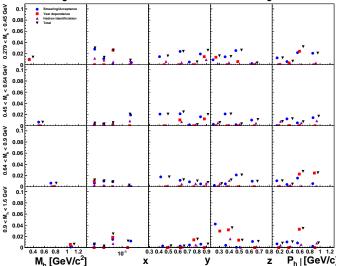
$$\delta A_{year} = \frac{1}{4} \sqrt{\left(A_e - A_p\right)^2 - \delta^2 A_e - \delta^2 A_p} \approx \frac{1}{4} \left|A_e - A_p\right|.$$

Particle Identification Procedure

► Two methods exist for assigning particle identification

- 1. Assign the identification with the highest probability
- 2. Assign all identifications to each event, but with varying weights
- Weights for second method computed according to
 - Define $P_{i,j} = p(ID_i|ID_j)$, where ID_j is the true identification and ID_i is the identification given by method 1.
 - For a given event, let ID_{i^*} be the identification given by method 1.
 - Weight for the event being ID_j is then P_{j,i^*}^{-1} .
- ► These methods both part of standard HERMES procedures.
- A systematic uncertainty is assigned, equal to half the difference between the two methods.

Combined Systematic Uncertainty



► Representative plot for the comparison of sources and combined systematic uncertainties: the $|2,2\rangle$ Collins moment for $\pi^+\pi^0$ dihadrons.

Conclusions and Outlook

Conclusions and Outlook

- TMDGen Monte Carlo generator-stage 1 complete
 - Fully ready for this analysis
 - Ready to begin use by others
- Acceptance Correction Method
 - Methodology complete
 - Numerical studies suggest it works fairly well
- Analysis and Systematics
 - Results not yet released
 - Approaching final state
 - Only need a cross check and possibly some fine tuning
- Can also extend the analysis
 - Analyze the full mass range for K^+K^-
 - Analyze the four K^* s