

S. Gliske

University of Michigan for HERMES Collaboration

APS April Meeting Session H16, April 15, 2007

Michigan

Gliske

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook
Outline				

- 2 Motivation
 - Generalized Parton Distribution Functions
 - Transverse Target Spin Asymmetry
- 3 Analysis

4 Results

5 Summary and Outlook

Michigan

Gliske

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook
Outline				

2 Motiv

- Generalized Parton Distribution Functions
- Transverse Target Spin Asymmetry

3 Analysis

4 Results

5 Summary and Outlook

Michigan

Gliske

Analysis

Results

Summary and Outlook

HERMES EXPERIMENT

27.6 GeV e[±] (polarized) beam on fixed polarized target
 Exclusive diffractive ρ⁰ production: γ* p → ρ⁰ p

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook
Outline				

2 Motivation

- Generalized Parton Distribution Functions
- Transverse Target Spin Asymmetry

3 Analysis

4 Results

5 Summary and Outlook

Michigan

Gliske

Factorization Theorem proven for longitudinal photons only

Soft hadronization process given by Φ

Similar diagram for DVSC

- Soft quark-gluon correlations given by GPDs H, E, H, E
- hermes

Michigan

Gliske

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook			
Concretized Deuton Distributi	en Functione						
Generalized Parton Distribution Functions							
Access to G	PDe						

Vector mesons (ρ, ω, ϕ) sensitive to GPDs: H E

Michigan

Gliske

GPDs and Nucleon Spin

Ji relation:

$$J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} x \left(H_q(x,\xi,t) + E_q(x,\xi,t) \right) dx = \frac{1}{2} \Delta \Sigma + L_q$$

- Contributions of quark spin to the nucleon spin measured through polarized DIS
- Measuring J_q determines contribution of orbital angular moment
- To leading twist, transverse target spin asymmetry (A_{UT}) linear in E

Michigan

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook		
Transverse Target Spin Asymmetry						
Production I	Kinematics					

- Angles define according to Trento convention
- ϕ is angle between lepton and hadron planes
- **\vec{S}_{\perp}** is spin vector transverse to photon momentum
- ϕ_s is angle between lepton plane and \vec{S}_{\perp}

Michigan

Transverse Target Spin Asymmetry

Transverse target polarization relative to virtual photon direction:

$$A_{UT}^{\gamma^*}(\phi,\phi_s) = \frac{1}{S_{\perp}} \frac{d\sigma(\phi,\phi_s) - d\sigma(\phi,\phi_s + \pi)}{d\sigma(\phi,\phi_s) + d\sigma(\phi,\phi_s + \pi)}$$

Transverse target polarization relative to lepton beam direction (measured):

$$A_{UT}^{\prime}(\phi,\phi_s) = \frac{1}{P_T} \frac{d\sigma(\phi,\phi_s) - d\sigma(\phi,\phi_s + \pi)}{d\sigma(\phi,\phi_s) + d\sigma(\phi,\phi_s + \pi)}$$

$$egin{aligned} \mathcal{P}_{T}\mathcal{A}_{UT}^{\prime}(\phi_{s}) &= \ &S_{T}(heta_{\gamma},\phi_{s})\mathcal{A}_{UT}^{\gamma^{*}}(\phi_{s}) + \mathcal{S}_{L}(heta_{\gamma},\phi_{s})\mathcal{A}_{UL}^{\gamma^{*}} \ &rac{\mathcal{S}_{L}}{\mathcal{S}_{T}} \ ⅇ 0.15 \end{aligned}$$

lepton plane

Gliske

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook
Outline				

2 Motivation

- Generalized Parton Distribution Functions
- Transverse Target Spin Asymmetry

3 Analysis

4 Results

5 Summary and Outlook

Michigan

Gliske

Angular (ϕ, ϕ_s) distribution can be written in terms of

asymmetries,

 $W(P_T, \phi, \phi_s) \propto 1 + A_{UU}(\phi) + P_T A'_{UT}(\phi, \phi_s),$

• where $A_{UU}(\phi)$ and $A'_{UT}(\phi, \phi_s)$ are parameterized as

$$\begin{aligned} A_{UU}(\phi) &= A_{UU}^{\cos(\phi)}\cos(\phi) + A_{UU}^{\cos(2\phi)}\cos(2\phi) \\ A_{UT}^{\prime}(\phi,\phi_s) &= A_{UT}^{\sin(\phi_s)}\sin(\phi_s) + A_{UT}^{\sin(\phi-\phi_s)}\sin(\phi-\phi_s) \\ &+ A_{UT}^{\sin(\phi+\phi_s)}\sin(\phi+\phi_s) + A_{UT}^{\sin(2\phi-\phi_s)}\sin(2\phi-\phi_s) \\ &+ A_{UT}^{\sin(2\phi+\phi_s)}\sin(2\phi+\phi_s) \\ &+ A_{UT}^{\sin(3\phi-\phi_s)}\sin(3\phi-\phi_s). \end{aligned}$$

Gliske

Photon-Nucleon CMS

- Each ρ⁰ polarization state has a characteristic decay angular distribution
- Can use ρ⁰ CM angle Θ_{ππ} of π-meson to separate ρ⁰_L, ρ⁰_T

$$\begin{split} & \mathcal{W}(\mathcal{P}_{T},\cos\theta_{\pi\pi},\phi,\phi_{s}) \propto \\ & \left[\begin{array}{c} \cos^{2}\theta_{\pi\pi} & r_{00}^{04} & \left(1+\mathcal{P}_{T}\mathcal{A}_{UT,\rho_{L}}^{\prime}(\phi,\phi_{s})+\mathcal{A}_{UU,\rho_{L}}(\phi)\right) \\ & \frac{1}{2}\sin^{2}\theta_{\pi\pi} & \left(1-r_{00}^{04}\right)\left(1+\mathcal{P}_{T}\mathcal{A}_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s})+\mathcal{A}_{UU,\rho_{T}}(\phi)\right) \end{array} \right] \end{split}$$

Gliske

- Kinematic cuts: $W^2 > 4 GeV^2$, $Q^2 > 1 GeV^2$, v < 0.85
- Exclusive cuts:

 $0.6 < M_{2\pi} < 1.0 GeV, \ \Delta E < 0.6 GeV, \ -t' < 0.4 GeV^2$

- Take into account target and beam polarizations
- Monte Carlo studies
 - Determine background contamination
 - Acceptance effects
 - Cross Contamination between asymmetry moments
 - Check L-T separation
 - Kinematic dependencies of Acceptance/Asymmetry

Exclusive Production

•
$$e
ho o e'
ho
ho^0$$
, $ho^0 o \pi^+\pi^-$

Exclusive ρ⁰ through Energy and Momentum transfer

$$\Delta E = \frac{M_x^2 - M_p^2}{2M_p}, t' = t - t_0$$

Gliske

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook
Outline				

- 2 Motivation
 - Generalized Parton Distribution Functions
 - Transverse Target Spin Asymmetry

3 Analysis

4 Results

5 Summary and Outlook

Michigan

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook
-				
Results				

Michigan

Gliske

Analysis

Results

Summary and Outlook

Comparison with GPD prediction

- F. Ellinghaus, W.D. Novak, A.V. Vinnikov, Z.Ye, hep-ph/0506264
- Data and theory agree within statistical errors
- More effort needed to make statement concerning J^u

Gliske

VM TTSA at HERMES

Michigan

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook
Outline				

- 2 Motivation
 - Generalized Parton Distribution Functions
 - Transverse Target Spin Asymmetry
- 3 Analysis

4 Results

Michigan

Gliske

- $A_{UT}^{\sin(\phi-\phi_s)}$ extracted separately for ρ_L^0 and ρ_T^0 by using a fit on the $\phi, \phi_s, \cos \theta_{\pi\pi}$ distributions
- Interpretation of results in terms of J_q forthcoming
- Also \u03c6-meson AUT results forthcoming

Michigan

Gliske

HERMES Experiment	Motivation	Analysis	Results	Summary and Outlook
ϕ -meson				

- Significantly different production process
- Should directly access gluon portion of GPDs
- Ongoing discussion with theorists about relating \(\phi\) A_{UT} with GPDs

• HERMES $\phi A_{UT}^{\sin(\phi+\phi_s)}$ and $A_{UT}^{\sin(\phi-\phi_s)}$ results available soon hermos