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Motivation & Background
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The HERMES Spectrometer
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SIDIS Production of Hadrons
I The SIDIS hadron & dihadron processes

e + p → e′ + h + X,

e + p → e′ + h1 + h2 + X.

I Dihadron production includes all
sub-processes leading to hadron pair final
states

I Factorization theorem implies σep→ehX =
∑

q DF ⊗ σeq→eq ⊗ FF

I Access integrals of DFs and FFs
through Fourier moments of φh, φS, φR

& Legendre polynomials in cos ϑ.
φh = signum

ˆ
(k × Ph) · q

˜
arccos

(q × k) · (q × Ph)

|q × k| |q × Ph|
,

φS = signum
ˆ
(k × S) · q

˜
arccos

(q × k) · (q × S)

|q × k| |q × S|
,

φR = signum
ˆ
(R × Ph) · n

˜
arccos

(q × k) · (Ph × R)

|q × k| |Ph × R|
.
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Motivation

I Collinear SIDIS Dihadron cross section
I Collinear access to transversity through two transverse target moments.
I Transversity is coupled with “Collins-like” fragmentation functions

H� sp
1,OT and H� pp

1,LT , associated with sp and pp interference.

I TMD SIDIS Dihadron cross section
I The Lund/Artru string fragmentation model predicts Collins function for

pseudo-scalar and vector meson final states have opposite signs.

I Two types of fragmentation are usually defined
Favored: struck quark present in the observed particles.

Disfavored: struck quark not present in the observed
particles.
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Lund/Artru String Fragmentation Model
I Favored fragmentation modeled as the

breaking of a gluon flux tube between the
struck quark and the remnant.

I Assume that the flux tube breaks into a qq̄
pair with quantum numbers equal to the
vacuum.

I Expect mesons overlapping with |12 , 1
2〉| 12 ,−1

2〉 and | 12 ,−1
2〉| 12 , 1

2〉 states to
prefer “quark left”.

I |0, 0〉 = pseudo-scalar mesons.
I |1, 0〉 = longitudinally polarized vector mesons.

I Expect mesons overlapping with |12 , 1
2〉| 12 , 1

2〉 and | 12 ,−1
2〉|12 ,−1

2〉 states to
prefer “quark right”.

I |1,±1〉 = transversely polarized vector mesons.

I For the two ρT ’s, “the Collins function” should have opposite sign to that for π

I For ρL, “the Collins function” is zero.
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Gluon Radiation Fragmentation Model
I Disfavored frag. model: assume produced

diquark forms the observed meson
I Assume additional final state interaction to

set pseudo-scalar quantum numbers
I Assume no additional interactions in

dihadron production.

I Exists common sub-diagram between this model and the Lund/Artru model.
I Keeping track of quark polarization states,

sub-diagram for disfavored |1, 1〉 diquark production
identical to sub-diagram for favored |12 ,−1

2〉|12 , 1
2〉

diquark production.
I Implies that the disfavored Collins function for transverse vector mesons also

has opposite sign as the favored pseudo-scalar Collins function
I Thus fav. = disfav. for Vector Mesons
I Data suggests fav. ≈ -disfav. for pseudo-scalar mesons.
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HERMES Collins Moments for Pions
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I Final result published in January
A. Airapetian et al, Phys. Lett. B 693

(2010) 11-16. arXiv:1006.4221 (hep-ex)

I Significant π− asymmetry implies
H⊥,disf

1 ≈ −H⊥,fav
1

I Pions have small, but non-zero
asymmetry

I Expect Collins moments negative
for ρ±.

I Would like uncertainties on
dihadron moments on the order of
0.02.
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Collinear Dihadron Results
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COMPASS

I Measure asymmetry
2 〈sin(φR⊥ + φS) sin θ〉 in
π+π− pair production.

I Related to h1 DF
(transversity) and sp
interference FF H�sp

1,UT .
I Model based on HERMES

results by Bacchetta, et al.
(PRD 74:114007, 2006)

I Prediction for COMPASS

results yields too small of
an asymmetry.
(arXiv:0907.0961v1)

I Both experiments indicate
non-zero h1 and H�sp

1,UT .
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The Angles φR verses φR⊥

I The angle φR is the fundamental quantity
I The angle φR⊥ is supposed to be an experimentally “easier” quantity.
I The difference is suppressed by (Q2)−2

I Doesn’t matter for leading twist analysis (twist-2)
I Might matter at twist-3 and twist-4

I Can compute one as easily as the other, so should really use φR

I Note, the equations for φR and φR⊥ are similar

φR = signum
[
(R× Ph) · n

]
arccos

(q× k) · (Ph × RT)

|q× k| |Ph × RT | .

φR⊥ = signum
[
(q× k) · RT

]
arccos

(q× k) · (q× RT)

|q× k| |q× RT | ,

with
n = (q · Ph) k− (k · Ph) q. (1)
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Second SIDIS Dihadron Program at HERMES

I Uses φR not φR⊥ and also use cos ϑ.
I Analyzes full TMD (i.e. non-collinear), sub-leading twist cross section.

I Number of unpol. moments: 15 (24 at Tw. 3), compared with pseudo-scalar
mesons 2 (3 at Tw. 3).

I Number of transverse target moments: 27 (54 at Tw. 3), compared with
pseudo-scalars 3 (6 at Tw. 3).

I Must determine which moments are suitable for release.
I Apply acceptance correction.

I Note: RICH momentum cuts significantly effect cos ϑ distribution.

I Attempt background subtraction to separate vector mesons from hadron pairs.
I Measure at least 4 vector mesons/hadron pairs (ρ-triplet and φ).

I Have data for K∗s (less background than ρ)
I Theory regarding mixed mass pairs (πK) not as well developed.
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Items Which Required Additional Development

I Non-collinear SIDIS Monte Carlo generator at sub-leading twist.
I Must simulate azimuthal dependence of cross section for systematic studies.
I Cannot use polynomial fits to the data as was done for pseudo-scalar analysis.

I Generator requires
I Non-collinear cross section at sub-leading twist.
I Non-collinear fragmentation models.

I Would also like to understand “Which term in the cross section includes
‘the Collins function’ for ρL, ρT?”

I Use alternate partial wave expansion
I Note: perhaps possible to answer question without new expansion
I However, pursuit of the answer in this manner has led to new theoretical results:

the sub-leading twist, TMD cross section.
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Theory
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Fragmentation Functions and Spin/Polarization

I Leading twist Fragmentation functions are related
to number densities

I Amplitudes squared rather than amplitudes

I Difficult to relate Artru/Lund prediction with
published notation and cross section.

I Propose new convention for fragmentation functions
I Functions entirely identified by the polarization states of the quarks, χ and χ′
I Any final-state polarization, i.e. |`1, m1〉|`2, m2〉, contained within partial wave

expansion of fragmentation functions
I Exists exactly two fragmentation functions

I D1, the unpolarized fragmentation function (χ = χ′)
I H⊥1 , the polarized (Collins) fragmentation function (χ 6= χ′)

I New partial waves analysis proposed, using direct sum basis |`, m〉 rather
than the direct product basis |`1, m1〉|`2, m2〉.
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Rigorous Definitions

I Fragmentation Correlation Matrix

∆mn(Ph, Sh; k) =
X

X

Z
d4x

(2π)4 eip·x˙0
˛̨
Ψm(x)

˛̨
Ph, Sh; X

¸˙
Ph, Sh; X

˛̨
Ψn(0)

˛̨
0
¸

I Trace Notation

∆[Γ](z, Mh, |kT |, cos ϑ, φR − φk) = 4π
z|R|

16Mh

Z
dk+ Tr [Γ∆(k, Ph, R)]

˛̨
˛̨

k−=P−h /z

.

I Define fragmentation functions via trace relations

Previous Definitions New Definition
FF Pseudo-Scalar Dihadron All Final States
D1 ∆[γ−] ∆[γ−] ∆[γ−(1+iγ5)]

G⊥1 – – ∝ ∆[γ−γ5] – –
H⊥1 ∆[(σ1−)γ5] ∆[(σ1−)γ5] ∆[(σ1−+iσ2−)γ5]

H̄�1 – – ∝ ∆[(σ2−)γ5] – –
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Relation with Previous Notation

I Real part of fragmentation function similar
I New definition of D1 & H⊥

1
I Adds “imaginary” part to D1 & H⊥1 , instead of introducing new functions.
I Functions are complex valued and depend on Q2, z, |kT |, Mh, cos ϑ, (φR − φk).

I Comparing with similar trace definitions, e.g. PRD 67:094002, yields the
relations

D1

∣∣∣
Gliske

=

[
D1 + i

|R||kT |
M2

h
sin ϑ sin(φR − φk) G⊥1

]

other

,

H⊥
1

∣∣∣
Gliske

=

[
H⊥

1 +
|R|
|kT | sin ϑei(φR−φk) H̄�1

]

other
=

|R|2
|kT |2 H�1

∣∣∣∣
other

,

I Note: there are inconsistencies in the literature between definitions of
H�1 , H̄�1 , and H′�

1 .
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Partial Wave Expansion
I Fragmentation functions expanded into partial waves in the direct sum basis

according to

D1 =
∞∑

`=1

∑̀

m=−`

P`,m(cos ϑ)eim(φR−φk)D|`,m〉1 (z, Mh, |kT |),

H⊥
1 =

∞∑

`=1

∑̀

m=−`

P`,m(cos ϑ)eim(φR−φk)H⊥|`,m〉
1 (z, Mh, |kT |),

I Each term in pseudo-scalar and dihadron cross section uniquely related to a
specific partial wave |`, m〉.

I Cross section looks the same for all final states, excepting certain partial
waves may or may not be present

I Pseudo-scalar production is ` = 0 sector
I Dihadron production is ` = 0, 1, 2 sector
I Given the pseudo-scalar cross section (at any twist) can extrapolate cross

section for other final states
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Where is “the Collins function?”
I Consider direct sum vs. direct product basis

1
2
⊗ 1

2
⊗ 1

2
⊗ 1

2
=

(
1
2
⊗ 1

2

)
⊗

(
1
2
⊗ 1

2

)
,

= (1⊕ 0)⊗ (1⊕ 0) ,

= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0.

I Three ` = 1 and two ` = 0 cannot be separated experimentally
I Theoretically distinguishable via Generalized Casimir Operators

I Longitudinal vector meson state |1, 0〉|1, 0〉 is a mixture of |2, 0〉 and |0, 0〉
I Cannot access, due to ` = 0 multiplicity
I Model predictions for longitudinal vector mesons not testable

I Transverse vector meson states |1,±1〉|1,±1〉 are exactly |2,±2〉
I Models predict dihadron H⊥|2,±2〉

1 has opposite sign as pseudo-scalar H⊥1 .
I Cross section has direct access to H⊥|2,±2〉

1

I Note: the usual IFF, related to H⊥|1,1〉
1 is not pure sp, but also includes pp

interference.
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Dihadron Twist-3 Cross Section
dσUU =

α2MhPh⊥
2πxyQ2

 
1 +

γ2

2x

!

×
2X

`=0

(
A(x, y)

X̀

m=0

»
P`,m cos(m(φh − φR))

„
F

P`,m cos(m(φh−φR))

UU,T + εF
P`,m cos(m(φh−φR))

UU,L

«–

+ B(x, y)
X̀

m=−`

P`,m cos((2 − m)φh + mφR)F
P`,m cos((2−m)φh+mφR)

UU

+ V(x, y)
X̀

m=−`

P`,m cos((1 − m)φh + mφR)F
P`,m cos((1−m)φh+mφR)

UU

)
,

dσUT =
α2MhPh⊥

2πxyQ2

 
1 +

γ2

2x

!
|S⊥|

2X

`=0

X̀

m=−`

(
A(x, y)

»
P`,m sin((m + 1)φh − mφR − φS))

×
„

F
P`,m sin((m+1)φh−mφR−φS)

UT,T + εF
P`,m sin((m+1)φh−mφR−φS)

UT,L

«–

+ B(x, y)
»

P`,m sin((1 − m)φh + mφR + φS)F
P`,m sin((1−m)φh+mφR+φS)

UT

+ P`,m sin((3 − m)φh + mφR − φS)F
P`,m sin((3−m)φh+mφR−φS)

UT

–

+ V(x, y)
»

P`,m sin(−mφh + mφR + φS)F
P`,m sin(−mφh+mφR+φS)

UT

+ P`,m sin((2 − m)φh + mφR − φS)F
P`,m sin((2−m)φh+mφR−φS)

UT

–)
.
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Structure Functions, Unpolarized
F

P`,m cos(mφh−mφR)

UU,L = 0,

F
P`,m cos(mφh−mφR)

UU,T =

8
><
>:

I
h
f1D|`,0〉

1

i
m = 0,

I
h
2 cos(mφh − mφk) f1

“
D|`,m〉

1 + D|`,−m〉
1

”i
m > 0,

F
P`,m cos((2−m)φh+mφR)

UU = −I

» |pT ||kT |
MMh

cos
`
(m− 2)φh + φp + (1− m)φk

´
h⊥1 H⊥|`,m〉

1

–
,

F
P`,m cos((1−m)φh+mφR)

UU = −2M
Q

I

"
|kT |
Mh

cos((m− 1)φh + (1− m)φk)

×
„

xhH⊥|`,m〉
1 +

Mh

M
f1

D̃⊥|`,m〉

z

«

+
|pT |
M

cos((m− 1)φh + φp − mφk)

×
„

xf⊥D|`,m〉
1 +

M
Mh

h⊥1
H̃|`,m〉

z

«#
.

I Can test Lund/Artru model with Fsin2 ϑ cos(2φR)
UU , Fsin2 ϑ cos(4φh−2φR)

UU via Boer-Mulder’s function
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Twist-2 Structure Functions, Transverse Target

F
P`,m sin((m+1)φh−mφR−φS)

UT,L = 0

F
P`,m sin((m+1)φh−mφR−φS)

UT,T = −I

» |pT |
M

cos
`
(m + 1)φh − φp − mφk

´

×
“

f⊥1T

“
D|`,m〉

1 + D|`,−m〉
1

”
+ χ(m)g1T

“
D|`,m〉

1 − D|`,−m〉
1

””–
,

F
P`,m sin((1−m)φh+mφR+φS)

UT = −I

» |kT |
Mh

cos
`
(m− 1)φh − φp − mφk

´
h1H⊥|`,m〉

1

–
,

F
P`,m sin((3−m)φh+mφR−φS)

UT = I

» |pT |2|kT |
M2Mh

cos
`
(m− 3)φh + 2φp − (m− 1)φk

´
h⊥1T H⊥|`,m〉

1

–
.

I Can test Lund/Artru model with Fsin2 ϑ sin(−φh+2φR+φS)
UT and Fsin2 ϑ sin(3φh−2φR+φS)

UT via
transversity

I In theory, could also test Lund/Artru and gluon radiation models with Fsin2 ϑ sin(φh+2φR−φS)
UT and

Fsin2 ϑ sin(5φh−2φR−φS)
UT via pretzelocity

I Data from SIDIS pseudo-scalar production indicate pretzelocity very small or possibly zero
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Collinear versus TMD Moments
I It is not the particulars of the DF or FF that make a moment survive in the

collinear case, but rather the
∑

m = 0 (necessary condition).
I Moments with h1H⊥|`,m〉1 (Collins moments)

I h1 has ∆m = 0; H⊥1 has χ 6= χ′, and thus ∆m = −1.
I Fragmentation functions surviving in collinear case must have m = 1 so

P
m = 0.

I Collinear moments are |1, 1〉, |2, 1〉.
I Moments with h⊥1 H⊥|`,m〉1 (Boer-Mulders moments)

I h⊥1 has ∆m = −1.
I H⊥1 again has ∆m = −1.
I Moments surviving in collinear case have m = 2, i.e. |2, 2〉.

I TMD Structure function for the |1, 1〉 AUT moment

Fsin ϑ sin(φR+φS)
UT (x, y, z, Ph⊥, pT , kT) = −I

» |kT |
Mh

cos
`
φp − φk

´
h1(x, pT) H⊥|1,1〉

1 (z, zkT)

–

I Collinear assumption implies
∫

dφh dPh⊥ Fsin ϑ sin(φR+φS)
UT (x, y, z, Ph⊥, pT , kT) ≈ h1(x) H⊥|1,1〉 (1)

1 (z),

with h1(x) =

∫
dpT h1(x, pT), H⊥|1,1〉 (1)

1 (z) =

∫
dkT

|kT |
Mh

H⊥|1,1〉
1 (z, zkT).
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The TMDGen Generator
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Collinear Dihadron Spectator Model
I Based on Bacchetta/Radici spectator model for collinear dihadron production

Phys. Rev. D74 (2006)
I The SIDIS X is replaced with a single, on-shell, particle of mass Ms ∝ Mh.
I Assume one spectator for hadron pairs and vector mesons.
I Integration over transverse momenta is performed before extracting

fragmentation functions.
I One can use the same correlator to extract TMD fragmentation functions

I One just needs to not integrate and follow the Dirac-matrix algebra and partial
wave expansion.

I Numeric studies show need for additional kT cut-off.
I Original model intended for π+π− pairs

I Adding flavor dependence allows generalization to π+π0, π−π0 pairs.
I Slight change to vertex function allows generalization to K+K− pairs.
I Slight change to vertex function and allows generalization to K+K− pairs.

I Unfortunately, the model only includes partial waves of the Collins function
for ` < 2.

I Instead, one can set |2,±2〉 partial waves proportional to partial waves of either
H⊥1 or D1.
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New TMDGEN Generator
I No previous Monte Carlo generator has TMD dihadron production with full

angular dependence
I Method

I Integrates cross section per flavor to determine “quark branching ratios”
I Throw a flavor type according to ratios
I Throw kinematic/angular variables by evaluating cross section

I Can use weights or acceptance rejection
I Full TMD simulation: each event has specific |pT |, φp, |kT |, φk values
I Includes both pseudo-scalar and dihadron SIDIS cross sections

I Guiding plans
I Extreme flexibility

I Allow many models for fragmentation and distribution functions
I Various final states: pseudo-scalars, vector mesons, hadron pairs, etc.
I Output options & connecting to analysis chains of various experiments
I Minimize dependencies on other libraries

I Full flavor and transverse momentum dependence.
I Current C++ package considered stable and allows further expansion
I Can be useful for both experimentalists and theorists.
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π+π0 Kinematic Distributions, p.1
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I Close agreement for x, y, z
distributions.

I Main discrepancy in x—may be
due to imbalance in the flavor
contributions, or Q2 effects.

I Similar results for other ππ and
KK dihadrons.
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π+π0 Kinematic Distributions, p.2

hP
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
o

rm
al

iz
ed

 C
o

u
n

ts

0

0.01

0.02

0.03

0.04

0.05
TMDGen

s
Pythia, w/o K

hM
0.4 0.6 0.8 1 1.2 1.4 1.6

N
o

rm
al

iz
ed

 C
o

u
n

ts

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04 TMDGen

s
Pythia, w/o K

I Fairly good agreement in both Ph⊥ and Mh distributions.
I Note: some discrepancies in full 5D kinematic, but PYTHIA also doesn’t

match data in full 5D

28 / 54



π+π0 Kinematic Distributions,
Intrinsic Transverse Momentum
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I Partonic transverse momentum denoted pT
I The fragmenting quark’s transverse momentum is zkT
I Model requires pT ≈ zkT in order to get narrow Ph⊥ peak
I Model does not require any flavor dependence to k2, k2

T cut-offs
I However, model poorly constrains RMS values 〈p2

T〉, 〈k2
T〉

I No other generator can show pT , kT distributions
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Analysis
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Neutral Pion Reconstruction
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I Invariant mass spectrum of γγ-system for π+γγ events.
I Eclus. = αEγ , with α equal to 0.97, 0.9255 and 0.95 for HERMES, PYTHIA,

and TMDGEN data, respectively.
I Central value of the peak is sufficiently close to the accepted value.
I Width of the peak is reflection of the resolution of the spectrometer for the

π0 mass.
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Mass Distribution: π+π0
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I Left panel: comparison with PYTHIA, highlighting various process decaying
into π+π− pair.

I Right panel: Hermes 02-05 data, fit to Breit-Wigner plus linear background to
estimate background fraction.

I High background fraction, but hope only VMs in pp-wave.
I Distributions for other ππ dihadron effectively the same.
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Mass Distribution: K+K−
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I Lower signal, but much lower background fraction.
I No other mesons decaying into K+K− within mass window.
I Clean access to strange quark distribution and fragmentation functions.
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Fitting Functions
I Perform angular fit in each kinematic bin
I Main focus is on transverse target Collins and Sivers moments
I Fit function includes 41 angular moments plus constant term

I Unpolarized moments, twist-2 and twist-3 (24 moments)
I The transverse target Collins and Sivers moments (18 moments)

f (cos ϑ, φh, φR, φS) =
2X

`=0

" X̀

m=0

a|`,m〉
1 P`,m cos(mφh − mφR)

+
X̀

m=−`

“
a|`,m〉

2 P`,m cos((2 − m)φh + mφR) + a|`,m〉
3 P`,m cos((1 − m)φh + mφR)

”

+
X̀

m=−`

“
b|`,m〉

1 P`,m sin((m + 1)φh − mφR − φS) + b|`,m〉
2 P`,m sin((1 − m)φh + mφR + φS)

” #

I Constrain a|0,0〉
1 = 1.

I Fit parameters are integrals of structure functions, which are integrals of
distribution and fragmentation functions

a|`,m〉1 ∝ f1D|`,m〉1

a|`,m〉2 ∝ h⊥1 H⊥|`,m〉
1

a|`,m〉3 ∝ f1D|`,m〉1 , h⊥1 H⊥|`,m〉
1

b|`,m〉1 ∝ f⊥1TD|`,m〉1

b|`,m〉2 ∝ h1H⊥|`,m〉
1
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Summary of Further Analysis Details

I The angular acceptance per kinematic bin was correct using a least squares
method and a basis expansion.

I A naive test of the acceptance correction method using TMDGen data for
both training and “HERMES” data.

I The the non-resonant photon pair background was estimated and subtracted
from the results.

I The charge symmetric background was studied and found to be negligible.
I Exclusive background fraction determined to be less than 3.5% with

negligible effects
I The overall vector meson fraction was determined for each final state.
I Using a simple MLE fit (no acceptance correction) the results were also

compared with the published results, using the same data productions,
binning, cuts, etc.
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Systematic Uncertainty
I Three non-negligible sources of systematic uncertainty were found:

I Acceptance and the Acceptance Correction
I PYTHIA+RADGEN is used to simulate data
I Moments are induced in PYTHIA+RADGEN data using weights computed from

the angular part of cross section using TMDGEN
I Angular integrated TMDGEN is used as training data for the acceptance

correction.
I Uncertainty set to half the difference between 4π weighted PYTHIA moments and

the corrected PYTHIAmoments.
I Year dependence

I 2002-2004 is with e+ beam, 2005 is with e− beam—almost equal statistics (about
40/60 split)

I Systematic uncertainty is estimated as half the uncertainty needed to reduce the χ2

per moment per bin to 1.
I RICH Unfolding vs. No Unfolding

I Two methods exist: either assign a track the most likely PID or assigning weights
according to some unfolding.

I Half the difference is taken as the systematic uncertainty.
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Results and Conclusions
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Conclusions
I Non-collinear SIDIS Dihadron production provides unique access to

I Strange quark distribution and fragmentation functions
I Testing the Lund/Artru model
I The TMD spin structure of fragmentation

I Theoretical developments include
I Clarifying the prediction of the Lund/Artru Model
I Developing the gluon radiation model
I Defining a new partial wave expansion
I Computing the twist-3 dihadron cross section

I Numerical Methods and Software
I Smearing and acceptance correction method
I TMDGEN Monte Carlo generator

I Analysis and systematic studies completed
I Results are in agreement with Lund/Artru model and the gluon radiation

model, assuming u-quark dominance
I Much more detailed information now provided regarding H⊥|1,1〉

1
I Just need release of preliminary results by the HERMES Collaboration
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Relations with Previous Notation, Partial Waves
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Fragmentation Correlation Function

I Described spectator model uses the following fragmentation correlation
function

∆q(k, Ph, R) =

{
|Fs|2 e

−2 k2

Λ2
s /k

(
/k − /Ph + Ms

)
/k

+ |Fp|2 e
−2 k2
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p /k/R

(
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(
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}
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Model Calculation for Fragmentation
Functions

16π2Mhk4
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Model Calculation for Fragmentation
Functions

8π2k4

|R| H⊥|1,1〉
1 = − |R|

|kT |
„

k2 + |kT |2
«„“

1− z2
”

k2 − z2|kT |2
«

×
"

Im (Fs∗Fp) e
−2 k2

Λ2
sp

#
,

8π2k4

|R| H⊥|1,0〉
1 =

1
z

Mh|R|
„

zk2 − 2
“

M2
h + z2(k2 + |kT |2)

”«

×
"

Im (Fs∗Fp) e
−2 k2

Λ2
sp

#
,

8π2k4

|R| H⊥|1,−1〉
1 = −M2

h |R||kT |
"

Im (Fs∗Fp) e
−2 k2

Λ2
sp

#
.

50 / 54



Smearing/Acceptance Effects
I Let x(T) be true value of variables, x(R) the reconstructed values
I A conditional probability p

(
x(R)

∣∣ x(T)
)

relates the true PDF p
(
x(T)

)
with the

PDF of the reconstructed variables, p
(
x(R)

)
.

I Specific relation given by Fredholm integral equation

p
“

x(R)
”

= η

Z
dDx(T) p

“
x(R)
˛̨
˛ x(T)

”
p
“

x(T)
”

,

1
η

=

Z
dDx(R)dDx(T) p

“
x(R)
˛̨
˛ x(T)

”
p
“

x(T)
”

.

I Can rewrite in terms of a smearing operator

g̃
“

x(R)
”

= S
h
g(x(T))

i
,

=

Z
dDx(T) p

“
x(R)
˛̨
˛ x(T)

”
g
“

x(T)
”

.

I Fredholm equation is simply

p
“

x(R)
”

= S
h
ηp
“

x(T)
”i

.
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Solution with Finite Basis and Integrated
Squared Error

I Restrict to finite basis

ηp
“

x(T)
”

=
X

i

αifi

“
x(T)
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,

p
“

x(R)
˛̨
˛ x(T)

”
=

X
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“
x(T)
”

.

I Determine parameters by minimizing the integrated squared error (ISE)
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Numerical Solution
I Define/compute

Fi,j =

Z
dDx(T) fi

“
x(T)
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,

I ISEs reduce to the matrix equation

BTF−1Bα = BTF−1b.

I Assuming (BTF−1B) and B are invertible, the solution for the given ISEs is

α =
(
BTF−1B

)−1
BTF−1b = B−1b.
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Uncertainty Calculation
I Define

(
Cb)

j,j′ =
δj,j′

NR − 1

[
V2

NR

NR∑
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f 2
i

(
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)
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2
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f 2
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f 2
k

(
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2

]
,

C′(B)
i,i′ =

∑

j,j′
C(B)

i,j;i′,j′αjαj′ .

I The uncertainty on α is then

C(α) = B−1C(b)B−T + B−1C′(B)B−T .

I One could consider a third term
(
BTF−1B

)−1, the Hessian of the matrix eq.
I Numeric studies show this term is not a meaningful estimate of the uncertainty,

and that it can be neglected.
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