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Motivation and Background

Expensive Machines vs. Machine Learning

I Often we encounter the situation that an existing machine could measure
additional observables if only. . .

I Common solution is to add new hardware component
I New hardware is not always feasible due to time/money constrains.
I Exist many Machine Learning techniques optimized to get the most

information out of available data
I This talk comprises just one tool, KDEs, and two particularly challenging

analysis: azimuthal moments with small statistics and unfolding radiative and
detector smearing/acceptance.
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Motivation and Background

Terminology
Density Estimation: The process of estimating p(x) given

{
x(i)

}N
i=0 ∼ p(x).

Generally, one selects a model p̂(x; α) and determines α̂
to optimize p(x) ≈ p̂(x; α̂)

Parameters: The parameters α in the model.

Model Parameters: Distinct from α, these describe general features of the
model.

Parametric Model: A model such that the number of parameters αi is fixed.

Non-parametric Model: A model such that the number of parameters αi is
determined by the data.

I All hadronic structure analysis involves density estimation at some level.
I Histograms are discontinuous, parametric density estimators.
I Continuous, non-parametric estimators especially preferable in the case of

I Small statistics
I High dimension
I Concerned about effect bin width/placement effects

I Also useful in classification problems
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Motivation and Background

From histograms to KDEs
I Think of each bin of a histogram as a column of small boxes, one box per data

point within the bin.
I Instead of aligning each box with the bin edges, center each box at the given

data point µ(i).
I Rather than using boxes, a select a shape K

(
x− µ(i)

)
(kernel function).

I Allow the scale of the kernel to vary per data point, K
((

H(i)
)−1 (

x− µ(i)
))

.
I The result: a KDE

p̂(x) =
1
N

N∑

i=1

K
((

H(i)
)−1 (

x− µ(i)
))

. (1)

I The matrix H(i) is the bandwidth matrix, and is usually chosen to be diagonal.
I Kernels assumed normalized and centered:∫

dDu K(u) = 1,

∫
dDu uiK(u) = 0. (2)
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Motivation and Background

Histogram vs KDE

Histograms KDEs
Discontinuous Continuous
Parametric (generally) Non-parametric
Slower convergence. Faster convergence
Must select bin widths, placement Only select kernel shape
Several types of bias due to “bin effects” Negligible bias due to shape
Fast to compute and evaluate More computationally intensive

“It can be shown that, under weak assumptions, there cannot
exist a non-parametric estimator that converges at a faster rate

than the kernel estimator” —Wikipedia

I Primary Reference for KDEs: Silverman, B.W. (1986) “Density estimation:
for statistics and data analysis.”

I KDEs still area of active research, esp. for high (> 2) dimensions
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Motivation and Background

Further details
I Clara Kernel is designed for

high-dimension, high-data KDEs

K
((

H(i)
)−1 (

x− µ(i)
))

=

ND
D∏

k=1


1−

(
xk − µ

(i)
k

hk

)2



γ

I Cartesian yet approximately radially
symmetric

I Evaluates in O(D) time
Normalized Clara Kernel,

γ = 4
I Bandwidths optimized by minimizing cross validation or hold-out-one

estimates of KL divergence (reduces to maximum likelihood problem), using
Simulated Annealing.

I Must choose model for how bandwidths vary with evaluation point
I Good choice: piecewise constants according to decision tree structured domains
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Motivation and Background

Fourier Moments of KDEs
I Integrals of 1D Clara Kernels with cosine and sine functions

Z
dφG cos(nφG)KG

i (φG) =

„
1

2nhi

«γ+1/2
Γ(2γ + 2)

√
π

Γ(γ + 1)
Jγ+1/2(nhi) cos

“
nµ(i)

”
; (3)

Z
dφG sin(nφG)KG

i (φG) =

„
1

2nhi

«γ+1/2
Γ(2γ + 2)

√
π

Γ(γ + 1)
Jγ+1/2(nhi) sin

“
nµ(i)

”
. (4)

I Assume data {x(i)}N
i=1 ∼ p(x) and KDE estimate p̂(x) =

∑
i Ki(x).

I Compare Monte Carlo Integral vs. Integral of KDE

2 〈cos(nφ)〉 ≈ 1
N

X
i

cos
“

nφ(i)
”

, (5)

≈ 1
N

X
i

„
1

2nhi

«γ+1/2
Γ(2γ + 2)

√
π

Γ(γ + 1)
Jγ+1/2(nhi) cos

“
nφ(i)

”
. (6)

I Equal only in limit nhi → 0, i.e. when kernel function becomes δ-function
I For hi > 0, KDE moments smaller in magnitude–larger effect for larger n
I Similar effect for any Kernel function
I Indirect relation between KDE Fourier moment’s accuracy and amount of data
I However, since bias is quantified, can correct for it in some circumstances
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Example 1: Azimuthal Asymmetries

Example 1: Azimuthal Asymmetries
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Example 1: Azimuthal Asymmetries

Example Details
I Consider exclusive φ lepto-production from polarized proton, ep↑ → e′φp′

I HERMES had about 500 events in 2002-2005
I Consider tuned PYTHIA Monte Carlo of about same size
I Consider studying whether any xB dependence can be determined, to compare

with Diehl/Kuglar model (arXiv:0708.1121v1)
I Difficult, as expected dependence is on the order of the statistical uncertainty

Diehl/Kuglar Model of sin(φ− φs) moment of the cross section, versus xB
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Example 1: Azimuthal Asymmetries

With 2 xB bins
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I Denote bandwidth in xB direction as hx.
I Other bandwidths are hφ = 2, hφS = 0.5.
I Note: bandwidths not fully optimized, due to factors external to this example.
I With two xB bins, no difference with or without using a KDE
I Cannot determine if dependence is statistically significant
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Example 1: Azimuthal Asymmetries

With 5 xB bins
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I KDEs slightly “smoother”
I Note: KDEs are not considered “smoothing methods”
I KDEs accurately represent the data
I Full range of bandwidths yield KDEs from linear to delta functions
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Example 1: Azimuthal Asymmetries

With 10 xB bins
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I Smoothness of KDE depends on bandwidth
I KDEs cannot overcome all difficulties of limited statistics
I This simple study does not include L/T separation, other details associated in

actual analysis
I KDEs are additional tool for statistic samples—can be useful for other rare

meson studies
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Example 2: Unfolding

Example 2: Unfolding
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Example 2: Unfolding Background

The Fredholm Integral Equation
I Measured distribution equals a smearing/acceptance operator acting on true

distribution

pDV(xR) = εκ(xR)
∫

dxG p(xR|xG)pT(xG) (7)

I PDF of measured data: pDV(xR)
I Smearing kernel is ratio of joint distribution to Born distribution, estimated

using Monte Carlo data

p(xR|xG) =
pMC(xR, xG)

pMC(xG)
. (8)

I ε is defined such that the right hand side integrates to 1.
I κ(xR) accounts for any detector efficiencies not modeled by the Monte Carlo

(often negligible)
I Unfolding is solving Equation 7 for the true distribution function pT(xG),

given data drawn from the densities pDV(xR), pMC(xR, xG), and pMC(xG).
I Most numeric methods reduce integral equation to matrix equation y = Ax.
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Example 2: Unfolding Smeared-in Background Normalization

“Smeared-in Background”

I Note: DR, the domain of xR, is larger than DG, the xG integration domain
I Separate true PDF into convex combination of PDFs over disjoint domains

DR, DG\DR.

pDV(xR) = εκ(xR)
∫

DG
dxG p(xR|xG)

{
ηpT(xG) xG ∈ DR

(1− η)pBKG(xG) otherwise
(9)

I Rearrange to solve

pDV(xR)−Υ(xR)pBKG(xR) = κ(xR)εη
∫

dxG p(xR|xG)pT(xG) (10)

I Normalization Υ(xR) is defined to include all needed factors
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Example 2: Unfolding Unfolding with Basis Functions

Solving the Fredholm Equation
I Change

pDV(xR) = ε

Z
dxG pMC(xR, xG)

pMC(xG)
pT(xG) → pDV(xR) = ε

Z
dxG pMC(xR, xG)

pT(xG)

pMC(xG)

(11)

I Use two basis expansions

R(xG) =
εpT(xG)
pMC(xG)

=
∑

k

ζkgk(xG), (12)

pT(xG) =
∑

i

αifi(xG). (13)

I Let β = εα.
I The Fredholm equation can then be rewritten as

pDV(xR) =
∫

dxG p(xR, xG)
∑

k

ζkgk(xG), (14)

∑

i

βifi(xG) = pMC(xG)
∑

k

βkgk(xG). (15)

Gliske (HERMES / Michigan) Analysis with KDEs TPSH ‘09 18 / 24



Example 2: Unfolding Unfolding with Basis Functions

Analytic Solutions
I Define:

Ai,j =

Z
dxGdxR ei(xR)pMC(xR, xG)gj(xG), (16)

bi =

Z
dxR ei(xG)pDV(xG), (17)

Bi,j =

Z
dxGfi(xG)pMC(xG)gj(xG), (18)

Di,j =

Z
dxGfi(xG)fj(xG), (19)

ci =

Z
dxGfi(xG). (20)

Bi,j

Z
dxGfi pMC(xG)gj(xG),

I Multiplying Equation 14 & 15 with ek(xR) and integrating over xR yields

b = Aζ, Dβ = Bζ. (21)

I Assuming A, D sufficiently well-conditioned and invertible, formal solution is

β̂ = D−1BA−1b. (22)

I Lastly, one can compute ε = cT β̂, α̂ = ε−1β̂.
I Compute D, c analytically; estimate A, b, B by Monte Carlo Integration,

summing over data drawn from respective density (generated from KDEs)
I Uncertainties can be propagated analytically
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Example 2: Unfolding 5D Monte Carlo Test

5D Monte Carlo Test
I Use LEPTO Monte Carlo to act as actual device

(HERMES).
I Use PYTHIA Monte Carlo to act as Monte Carlo

(as is done in analysis of real data).

Density Stats.
pMC(xR, xG) 4.5M

pMC(xG) 6.0M
pDV(xR) 1.2M
pT(xG) 11.6M

I Basis set fi chosen to be same 1D projections used for HERMES preliminary
h+/h− cos(nφ) moments.

I All basis sets ei = gi are Cartesian product of cos(nφ) moments (n=0,1,2) and
piecewise constants, according to decision tree structure.

I Unfolding time on the order of 20 minutes (not including bandwidth
optimization).

I Note: poor choices for kinematic portion of basis include those.
I Too computationally expensive

I KDEs, Splines
I Multiple layers of kernels chosen to

tessellate the domain

I Inaccurate results
I Piecewise affine

(hyper-plane+const.)
I Histograms (w/o “bad bin” removal)
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Example 2: Unfolding 5D Monte Carlo Test

Monte Carlo Results
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I Decision tree in order pT , z, y, x, dividing statistics of pDV into 3rds at each level.
I KDEs used for pDV, pMC(xG, xR), but not yet pMC(xG).
I Systematic uncertainty still much larger than statistical—hope to improve with

inclusion of pMC(xG) KDE & further bandwidth optimization.
I Smeared-in background correction has been applied.
I Many other options for fi—options for ei, gi limited by conditioned-ness of A.
I Can also extract kinematic properties, e.g. 〈PT〉.

Gliske (HERMES / Michigan) Analysis with KDEs TPSH ‘09 21 / 24



Conclusion

Conclusion
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Conclusion

Conclusion

I KDE tools optimized for physics analysis developed
I Although previous tools existed, extensive code developed/optimized for

precision/accuracy in high D and w/ large statistics
I Includes boundary conditions
I Novel bandwidth optimization procedure
I Evaluating KDEs and optimizing bandwidths relatively computationally

intensive
I Generating data from KDE very fast
I All KDE code can be made publicly available, depending on the interest

I Points of Caution
I May need to correct Fourier moments based on bandwidth
I High dimensional functionals of non-parametric estimators often not feasible

(must resort to basis functions)
I Basis functions not needed for few dimensions nor more “simple” functionals
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Conclusion

Conclusion
I Have shown KDEs w/ Basis Functions for

I Azimuthal Moment Extraction with Small Statistics
I 5D cos(nφ) Unfolding

I KDEs also very promising for
I Yet higher dimensional unfolding (6D for SIDIS AUT moments)
I Azimuthal Moment Extraction with Larger Statistics
I Process Identification (SIDIS ρ0 AUT )
I Particle Identification
I Monte Carlo Generation
I . . .

I Methods of solving integral inversion problems are applicable to other
integral equations.

I Expect to see more KDEs in the future
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