HERMES measurements of charge separated multiplicities for π^{\pm} and K^{\pm} production in semi-inclusive DIS

Sylvester J. Joosten

On behalf of the HERMES collaboration University of Illinois at Urbana-Champaign

DIS 2011 XIX International Worshop on Deep Inelastic Scattering

Sylvester J. Joosten (HERMES, Illinois) HERMES SIDIS multiplicities

DIS 2011 1 / 23

SIDIS Multiplicities

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

SIDIS Multiplicities

Example: LO Framework

$$\frac{d\mathcal{M}_n^h(Q^2, x, z)}{dz} \approx \frac{\sum_q e_q^2 f_1^q(Q^2, x) \mathcal{D}_q^h(Q^2, z)}{\sum_q e_q^2 f_1^q(Q^2, x)}$$

Assumptions: QPM, LO, leading twist factorized colinear QCD

- Opens access to
 - Fragmentation functions $\mathcal{D}_q^h(Q^2, z)$,
 - \star Disentangle q and \bar{q} contributions
 - Parton distribution functions $f_1^q(Q^2, x)$
- Additionally, through the p_T dependence
 - Fragmentation k_T
 - Intrinsic quark p_T

Sylvester J. Joosten (HERMES, Illinois)

DIS 2011 2 / 23

SIDIS

DIS

The HERMES Experiment

- 27.6 GeV HERA electron/positron beam
- Pure H and D gas target
- Forward spectrometer
- Very clean lepton-hadron separation
- RICH detector enables very good pion-kaon separation

- W² > 10GeV²
 0.1 < y < 0.85
- $Q^2 > 1 \text{GeV}^2$
- 0.023 < *x* < 0.6

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

SIDIS Multiplicities: New HERMES Results

- High statistics
- 3D analysis (in x, z, p_T and Q^2, z, p_T)
- \bullet For identified and charge-separated π^\pm and ${\it K}^\pm$
- High precision data require sophisticated analysis:

SIDIS Multiplicities: New HERMES Results

- High statistics
- 3D analysis (in x, z, p_T and Q^2, z, p_T)
- \bullet For identified and charge-separated π^\pm and ${\it K}^\pm$
- High precision data require sophisticated analysis:
 - Corrections for detector efficiencies
 - 3D unfolding for smearing and acceptance effects
 - In-depth systematics analysis
- High precision 3D data pushes the envelope, enabling:

SIDIS Multiplicities: New HERMES Results

- High statistics
- 3D analysis (in x, z, p_T and Q^2, z, p_T)
- \bullet For identified and charge-separated π^\pm and ${\it K}^\pm$
- High precision data require sophisticated analysis:
 - Corrections for detector efficiencies
 - 3D unfolding for smearing and acceptance effects
 - In-depth systematics analysis
- High precision 3D data pushes the envelope, enabling:
 - Evaluation of the quality of PDF and FF parametrizations
 - Improvements on the current parametrizations
 - Access to the transverse fragmentation function
 - Tests of the applicability of the usual colinear LO, leading-twist model assumptions in the HERMES kinematic regime

Unfolding the SIDIS Multiplicities

Relation between true and measured quantities

$$\nu_{i} = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin}\,i} dX \int_{\text{bin}\,j} dY s(X|Y) \epsilon(Y) f(Y)}{\int_{\text{bin}\,j} dY f(Y)} \mu_{j} + \beta_{i}$$

- Measured quantity ν_i in bin *i* (eg. differential cross section)
- True quantity μ_j in bin j following the true distribution f(Y)
- Properties of the experiment:
 - Resolution function s(X|Y)
 - ★ Experimental resolution
 - ★ Radiative effects
 - Acceptance function $\epsilon(Y)$
- Background contributions β_i in bin i

Unfolding the SIDIS Multiplicities

Relation between true and measured quantities

$$\nu_{i} = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin}\,i} dX \int_{\text{bin}\,j} dY s(X|Y) \epsilon(Y) f(Y)}{\int_{\text{bin}\,j} dY f(Y)} \mu_{j} + \beta_{i}$$

• Has the shape of a matrix equation

$$\nu_i = \sum_{j=1}^M S_{ij} \mu_j + \beta_i$$

- Smearing matrix *S* independent of underlying physics *f* if bins small enough
- Extracted from MC simulation

Unfolding the SIDIS Multiplicities

Relation between true and measured quantities

$$\nu_{i} = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin}\,i} dX \int_{\text{bin}\,j} dY s(X|Y) \epsilon(Y) f(Y)}{\int_{\text{bin}\,j} dY f(Y)} \mu_{j} + \beta_{i}$$

• Solve for true data by simple matrix inversion

$$\mu_j = \sum_{i=1}^M S_{ji}^{-1} (\boldsymbol{\nu}_i - \beta_i)$$

- Resulting multiplicity corrected for
 - Limited acceptance
 - Finite detector resolution
 - Radiative smearing

Results: Projections vs z

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

DIS 2011 6 / 23

Results: Projections vs zp_T

- Disentanglement of z and p_T
- Access to the transverse intrinsic quark p_T and fragmentation k_T .

Results: Projections vs zQ^2

• Disentanglement of z and Q^2

DIS 2011 8 / 23

Comparison with Predictions: Projections vs z

LO Interpretation

- Good agreement with CTEQ6+DSS for π^+ and K^+
- CTEQ6+Kretzer performs well for pions
- Larger deviations for π^-
- Agreement with K⁻ rather poor

• Model uncertainty?

Proton-deuteron multiplicity asymmetry

definition: $A^h_{d-p}\equiv rac{\mathcal{M}^h_d-\mathcal{M}^h_p}{\mathcal{M}^h_d+\mathcal{M}^h_p}$

- Reflects different valence quark content
- Improved precision by cancellations in the systematic uncertainty

Proton-deuteron multiplicity asymmetry

definition: $A^h_{d-p}\equiv rac{\mathcal{M}^h_d-\mathcal{M}^h_p}{\mathcal{M}^h_d+\mathcal{M}^h_p}$

LO Interpretation:

- Good agreement with LO model calculations for positive hadrons
- Bigger discrepancy for negative hadrons

• Model uncertainty?

DIS 2011 10 / 23

Conclusions

- Unique set of 3D high-precision SIDIS multiplicities for π[±] and K[±] on p and d are presented
- By using asymmetries and difference ratios, the precision can be improved even further due to cancellations in the systematic uncertainties
- High value for NLO fits
- Data can significantly contribute to knowledge of the quark fragmentation process

BACK-UP SLIDES

Sylvester J. Joosten (HERMES, Illinois) HERMES SIDIS multiplicities

<ロ> <同> <同> < 同> < 同>

Full Results: Projections vs z

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

DIS 2011 13 / 23

Full Results: Projections vs *zp*_T

.⊒ →

Full Results: Projections vs zx

DIS 2011 15 / 23

A B > A B >

Full Results: Projections vs zQ^2

э

< ロ > < 同 > < 回 > < 回 >

HERMES SIDIS multiplicities

Sylvester J. Joosten (HERMES, Illinois)

Full Results: Asymmetries vs z

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

DIS 2011 17 / 23

Full Results: Asymmetries vs zp_T

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

DIS 2011 18 / 23

Full Results: Asymmetries vs zx

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

DIS 2011 19 / 23

Full Results: Asymmetries vs zQ^2

 ↓ ∃
 ⊃ < ○</th>

 DIS 2011
 20 / 23

Impact of exclusive VM fractions

DIS 2011 21 / 23

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

Average Q^2 as a function of x

SIDIS Multiplicities: Historical

