Direct Extraction of Helicity Amplitude Ratios in Exclusive ρ^0 Electroproduction

S. I. Manaenkov, Petersburg Nuclear Physics Institute, on behalf of the HERMES Collaboration

> International Workshop Hadron Structure and QCD

Gatchina, Russia, July 5 - 9, 2010

- Physics Motivation
- Data Processing
- Amplitude Method and Spin-Density Matrix Element Method
- Kinematic Dependences of Ratios of Helicity Amplitudes
- World Results on Ratios of Helicity Amplitudes
- Summary and Outlook

Physics Motivation

- γ* + N → V + N is a perfect reaction to study both vector-meson production mechanism and hadron structure. Spin Density Matrix Elements (SDMEs) of ρ⁰ at HERMES: EPJ C62 (2009) 659. SDMEs are expressible in terms of ratios of helicity amplitudes, hence ratios can be extracted from angular distribution of decay π⁺π⁻.
- Data on $d\sigma/dt = \sum |F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N}|^2$ additional to SDMEs gives a possibility to extract moduli of all the helicity amplitudes and phase differences between them.
- Generalized Parton Distributions (GPDs) of the nucleon can be obtained from the amplitude $F_{00} \equiv F_{0\frac{1}{2}0\frac{1}{2}}$ ($\gamma_L \rightarrow V_L$) for which factorization theorem is proved. Extraction of amplitude ratios is a first step to get F_{00} and GPDs.
- Difference between proton and deuteron results would points out contribution of $q\bar{q}$ -exchange with isospin I = 1 and natural parity $P = (-1)^J$ (ρ , a_0 , a_2 reggeons).

Physics Motivation

Extraction of amplitude ratios provides a possibility to distinguish between contributions of Natural Parity Exchange (NPE, J^P = 0⁺, 1⁻,...) amplitudes T_{λ_Vλ_γ} (Pomeron = two-gluon exchange, ρ, ω, a₂,... reggeons = qq̄ exchange) and Unnatural Parity Exchange (UPE, J^P = 0⁻, 1⁺, ...) amplitudes (π, a₁, b₁,...reggeons = qq̄ exchange) U_{λ_Vλ_γ} better than in SDME method.

• Violation of s-channel helicity ($\lambda_V \neq \lambda_\gamma$) can be studied more reliably on the language of amplitude ratios rather than in SDME analysis. Spin-flip amplitudes T_{01} , T_{10} provide information on vector-meson structure. They are zero in the absence of quark motion in vector mesons (if quark carries momentum fraction $z = \frac{1}{2}$).

Kinematics of Exclusive ρ^0 -Meson Production at HERMES

- $W = 3.0 \div 6.5 \text{ GeV}$, $\langle W \rangle = 4.9 \text{ GeV}$ Total number of events (1996-2005)
- $Q^2 = 0.5 \div 7.0 \text{ GeV}^2$, $< Q^2 >= 1.95 \text{ GeV}^2$ Deuteron: ρ^0 16388
- $x_B = 0.01 \div 0.35$, $< x_B > = 0.08$
- $0 \le -t' \le 0.4 \text{ GeV}^2$, $< -t' >= 0.13 \text{ GeV}^2$ with $t' = t t_{min}$

 $\Delta E = \frac{M_X^2 - M_p^2}{2M_p}$ with $M_X^2 = (p + q - p_{\pi^+} - p_{\pi^-})^2$ and M_X being missing mass

Hydrogen: ho^0 - 9860

Data Processing using Maximum Likelihood Method in MINUIT

 $\Psi = \phi - \Phi$ (in S-Channel Helicity Conservation (SCHC) approximation)

- Monte Carlo Events: 3-dimensional matrix of fully reconstructed MC events at initial uniform angular distribution.
- Binned Maximum Likelihood (BML) Method: 8 × 8 × 8 bins of cos(Θ), φ, Φ. Simultaneous fit of 23 SDMEs (5 ratios of helicity amplitudes) for data with negative and positive beam helicity (< P_b >= ±53.5%) and unpolarized target. Agreement of fitted angular distributions with the HERMES data

- First: $e \rightarrow e + \gamma^*$ (QED) Spin-Density Matrix (SDM) of the virtual photon $\rho(\Phi, \epsilon)$
- Second: $\gamma^* + N \rightarrow V + N$ (QCD) Helicity amplitudes in CM system of $\gamma^* N \ F_{\lambda_V \lambda'_N; \lambda_\gamma \lambda_N}(W, Q^2, t')$ Vector-meson spin-density matrix $r = \frac{1}{2N} \operatorname{tr}_{\lambda_N \lambda'_N} \{ F \ \rho \ F^+ \},\$ $N = \operatorname{Tr}_{\lambda_V \lambda'_V \lambda_N \lambda'_N} \{ F \ \rho \ F^+ \}.$ If SDM of γ^* is decomposed into set of nine matrices Σ^{α} then SDMEs are $r_{\lambda_V \lambda'_V}^{\alpha} = \frac{1}{2N} \operatorname{tr}_{\lambda_N \lambda'_N} \{ F \ \Sigma^{\alpha} \ F^+ \}_{\lambda_V \lambda'_V}.$
- Third: $\rho^0 \Rightarrow \pi^+\pi^-$ (conservation of \vec{J}) $|\rho^0; 1m > \rightarrow |\pi^+\pi^-; 1m > \Rightarrow Y_{1m}(\theta, \phi)$ Angular distribution $\mathcal{W}(\Phi, \phi, \cos \Theta)$ depends linearly on $r^{\alpha}_{\lambda_V \lambda'_V}$ and P_b .

SDME method

- 23 LU SDMEs (for Longitudinally polarized beam and Unpolarized target) are considered as free parameters in fit of angular distribution of pions from decay $\rho^0 \rightarrow \pi^+ + \pi^-$ in any small bin of kinematic variables (Q^2 , t' etc.).
- Relation of SDMEs and helicity amplitudes is ignored.

Amplitude method

- SDMEs are expressed in terms of ratios of helicity amplitudes.
- Helicity amplitude ratios are free parameters in fit of angular distribution in any small bin.
- Binning 4×4 of Q^2 and -t'.

Amplitude Method

- 18 independent amplitudes
 34 real free parameters (functions)
- 23 LU SDMEs (< 34)
- Hierarchy of amplitudes at small t' and high Q². Neglect small amplitudes.
- NPE $(T_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N})$ and UPE $(U_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N})$ helicity amplitudes. F = T + U, $T/U_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N} = \frac{1}{2}(F_{\lambda_V \lambda'_N \lambda_\gamma \lambda_N})$ $\pm (-1)^{\lambda_N - \lambda'_N} F_{\lambda_V - \lambda'_N \lambda_\gamma - \lambda_N})$ Shorthand notation:

$$T_{\lambda_V \lambda_\gamma} = T_{\lambda_V \frac{1}{2} \lambda_\gamma \frac{1}{2}}$$

- No interference between NPE and UPE amplitudes for LU SDMEs
- UPE are suppressed at high W. Neglect all UPE amplitudes?

- No interference between amplitudes with and without nucleon spin flip.
- $T_{\lambda'_N \neq \lambda_N}/T_{\lambda'_N = \lambda_N} \sim \alpha = v_T/(2M)$. Fractional contribution of NPE amplitudes with $\lambda'_N \neq \lambda_N$ to LU SDMEs $\sim \alpha^2 <$ experimental uncertainty.
- Neglect with NPE nucleon spin-flip amplitudes retains T_{11}/T_{00} , T_{01}/T_{00} , T_{10}/T_{00} , T_{1-1}/T_{00} (8 parameters).
- SDME analysis: S-channel helicity conservation (SCHC) at small t'. $|U_{01}|, |U_{10}|, |U_{1-1}| \ll |U_{11}|$ retains only $|U_{11}| = \sqrt{|U_{1\frac{1}{2}1\frac{1}{2}}|^2 + |U_{1-\frac{1}{2}1\frac{1}{2}}|^2}$ 9th parameter: $|U_{11}|/|T_{00}|$.
- Hierarchy of extracted amplitudes at HERMES kinematic region $|T_{00}|^2 \sim |T_{11}|^2 \gg |U_{11}|^2 > |T_{01}|^2 >$

 $|T_{10}|^2 \sim |T_{1-1}|^2$ $|T_{10}|^2 \sim |T_{1-1}|^2$

Kinematic Dependences of Ratios of Helicity Amplitudes

- No difference between proton and deuteron results for amplitude ratio T_{11}/T_{00} .
- pQCD prediction (Ivanov, Kirshner; Kuraev, Nikolaev, Zakharov): $T_{11}/T_{00} \propto M_{
 ho}/Q$.
- Fit of Q dependence: $\text{Re}(T_{11}/T_{00}) = a/Q$, $\text{Im}(T_{11}/T_{00}) = b \cdot Q$. Combined data on proton and deuteron: $a = 1.129 \pm 0.024 \text{ GeV}$, $\chi^2/N_{df} = 1.02$; $b = 0.344 \pm 0.014 \text{ GeV}^{-1}$, $\chi^2/N_{df} = 0.87$.
- Behaviour of $Im(T_{11}/T_{00})$ is in a contradiction with high-Q asymptotic in pQCD. Phase difference $\delta_{11} \sim 30^{\circ}$ and grows with Q^2 in disagreement with pQCD calculation
- No t dependence: difference of slopes $\beta_L \beta_T = -0.6 \pm 0.4$ GeV⁻².

- Violation of S-Channel Helicity $(\lambda_V \neq \lambda_\gamma)$: $T_{01} \neq 0$.
- No difference between proton and deuteron results for amplitude ratio T_{01}/T_{00} .
- pQCD prediction (Ivanov, Kirshner; Kuraev, Nikolaev, Zakharov): $\frac{T_{01}}{T_{00}} \propto \frac{\sqrt{-t'}}{Q}$.
- Fit of t' dependence: $\text{Re}(T_{01}/T_{00}) = a\sqrt{-t'}$, $\text{Im}(T_{01}/T_{00}) = b\sqrt{-t'}/Q$. Combined proton and deuteron data: $a = 0.399 \pm 0.023 \text{ GeV}^{-1}$, $\chi^2/N_{df} = 0.72$; $b = 0.20 \pm 0.07$, $\chi^2/N_{df} = 1.09$.

- No difference between proton and deuteron results for amplitude ratio $|U_{11}/T_{00}|$.
- pQCD prediction: $U_{11}/T_{00} \propto M_{
 ho}/Q$.
- Neither Q^2 nor t' dependence: $|U_{11}|/|T_{00}| = a$, $a = 0.391 \pm 0.013$, $\chi^2/N_{df} = 0.44$ where $|U_{11}|^2 \equiv |U_{1\frac{1}{2}1\frac{1}{2}}|^2 + |U_{1\frac{1}{2}1-\frac{1}{2}}|^2$.
- Unnatural Parity Exchange is seen much better than in SDME method.
- Contradiction both with high-Q asymptotic and one-pion-exchange dominance.

Test of Unnatural-Parity Exchange for ρ^0 Meson

- Natural and Unnatural Parity Exchanges in the *t*-channel NPE: GPD *H*, *E*; $T_{\lambda_{\rho}\lambda_{\gamma}}$ UPE: GPD \tilde{H} , \tilde{E} ; $U_{\lambda_{\rho}\lambda_{\gamma}}$ NPE (Pomeron, ρ , ω , f_2 , a_2 , ...) dominate and UPE (π , a_1 , b_1 ...) are suppressed at high energies
- Signal of UPE in SDME method

$$u_{1} = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1},$$

$$u_{1} = \sum_{\lambda_{N}\lambda_{N}'} \frac{2\epsilon |U_{10}|^{2} + |U_{11} + U_{-11}|^{2}}{N}$$

where
$$N = N_T + \epsilon N_L$$
,
 $N_T = \sum_{\lambda_N \lambda'_N} (|T_{11}|^2 + |T_{01}|^2 + |T_{-11}|^2 + |U_{11}|^2 + |U_{01}|^2 + |U_{-11}|^2)$,
 $N_L = \sum_{\lambda_N \lambda'_N} (|T_{00}|^2 + |T_{10}|^2 + |T_{-10}|^2 + |U_{-10}|^2)$.

World Results on Ratios of Helicity Amplitudes

• H1: Unpolarized beam and unpolarized target (15 SDMEs), $\langle Q^2 \rangle = 3.3 \text{ GeV}^2$.

- Additional assumption: all amplitudes are imaginary, all amplitude ratios are real.
- HERMES: Longitudinally polarized beam and unpolarized target (23 SDMEs). Both real and imaginary parts of ratios of helicity amplitudes are extracted.
- Excellent agreement of amplitude ratios extracted by H1 and HERMES.

Summary

- Measurement of ρ^0 -meson production by longitudinally polarized electron/positron beam on unpolarized proton and deuteron in the HERMES experiment permits to extract both real and imaginary parts of T_{11}/T_{00} , T_{01}/T_{00} , T_{10}/T_{00} , T_{1-1}/T_{00} , and $|U_{11}/T_{00}|$.
- Dependences of the most reliably obtained ratios T_{11}/T_{00} , T_{01}/T_{00} , $|U_{11}/T_{00}|$ on Q^2 and t' is studied. The observed dependences of $\mathrm{Im}(\mathrm{T}_{11}/\mathrm{T}_{00})$ and $|U_{11}/T_{00}|$ are in contradiction with high-Q asymptotic behaviour predicted in pQCD while dependences of $\mathrm{Re}(\mathrm{T}_{11}/\mathrm{T}_{00})$ and $\mathrm{Im}(\mathrm{T}_{01}/\mathrm{T}_{00})$ are in agreement with pQCD prediction.
- No statistically significant difference between proton and deuteron results for amplitude ratios T_{11}/T_{00} , T_{01}/T_{00} , $|U_{11}/T_{00}|$ is found.
- Violation of S-channel helicity is observed in amplitude method with higher accuracy than in SDME method.
- Contribution of unnatural parity exchange amplitude U_{11} of ρ^0 -meson production is found in amplitude method with much higher accuracy than in SDME analysis.

Outlook

- To decrease background contribution by measuring recoil nucleon.
- Include data on transversely polarized target into amplitude analysis.