HERMES SIDIS multiplicities of charged pions and kaons on the proton and the deuteron

http://www-hermes.desy.de/multiplicities

Sylvester J. Joosten

University of Illinois at Urbana-Champaign On behalf of the HERMES collaboration

GHP April 2013, Denver, CO 5th Workshop of the APS Topical Group on Hadronic Physics

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

GHP April 2013 1 / 32

3D Multiplicities in Unpolarized SIDIS at HERMES

- Evaluation and improvement of **PDFs and FFs**
- Access to the transverse momentum structure
- Precise tests of a leading twist approach at intermediate energies

Multiplicity: SIDIS cross section normalized to DIS

$$M^{h}(Q^{2}, x, z, P_{h\perp}) \equiv \frac{d \times dQ^{2}}{d^{2} \sigma^{\mathsf{DIS}}(Q^{2}, x)} \frac{d^{4} \sigma^{h}(Q^{2}, x, z, P_{h\perp})}{d \times dQ^{2} dz dP_{h\perp}}$$

Sylvester J. Joosten (HERMES, Illinois)

- A - E - M

Section 1

Measuring SIDIS multiplicities at HERMES

Measuring SIDIS multiplicities at HERMES

SIDIS Multiplicities: New HERMES Results

• High statistics

- **3D** analysis (in $x, z, P_{h\perp}$ and $Q^2, z, P_{h\perp}$)
- For identified and charge-separated π^\pm and ${\cal K}^\pm$
- High statistics data require sophisticated analysis:
 - Corrections for trigger inefficiencies
 - Charge-symmetric background correction
 - RICH unfolding
 - Correction for the contamination by exclusive vector mesons (optional)
 - Multidimensional smearing-unfolding for radiative effects, limited acceptance and detector smearing
- Final results corrected to 4π Born, with well-understood systematics.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日日 つくべ

Exclusive vector meson contamination

- Diffractive ρ^0 and ϕ contaminate the SIDIS π and K sample
- Correction obtained from tuned PYTHIA
 - Applied at the fully differential level
 - Most of the correction canceled by the corresponding inclusive correction

▶ systematic < 1%

• results available both with and without this correction

This presentation: with VM correction

5 - SQC

- A raw measurement does not give experiment-independent information:
 - ▶ Usually not known if any radiative effects occured (eg. ISR and FSR)
 - Detector has less than full 4π coverage
 - Detector has a finite resolution

Relation between true and measured quantities

$$\nu_{i} = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin}\,i} dX \int_{\text{bin}\,j} dY \int d\bar{Y} f(Y) \rho(\bar{Y}|Y) \mathcal{A}(\bar{Y}) \mathcal{M}(\bar{Y}|X)}{\int_{\text{bin}\,j} dY f(Y)} \mu_{j} + \beta_{i}$$

Physics distribution f

Background from outside the acceptance β

◎ ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の Q @

Relation between true and measured quantities

$$\nu_{i} = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin}\,i} dX \int_{\text{bin}\,j} dY \int d\bar{Y} f(Y) \rho(\bar{Y}|Y) \mathcal{A}(\bar{Y}) \mathcal{M}(\bar{Y}|X)}{\int_{\text{bin}\,j} dY f(Y)} \mu_{j} + \beta_{i}$$

• Has the shape of a matrix equation

$$\nu_i = \sum_{j=1}^M S_{ij} \mu_j + \beta_i$$

Sylvester J. Joosten (HERMES, Illinois) HERMES SIDIS multiplicities

Relation between true and measured quantities

$$\nu_{i} = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin}\,i} dX \int_{\text{bin}\,j} dY \int d\bar{Y} f(Y) \rho(\bar{Y}|Y) \mathcal{A}(\bar{Y}) \mathcal{M}(\bar{Y}|X)}{\int_{\text{bin}\,j} dY f(Y)} \mu_{j} + \beta_{i}$$

- Has the shape of a matrix equation
- Smearing matrix S is calculated using two MC simulations
- Solve for true data by simple matrix inversion

$$\mu_j = \sum_{i=1}^M S_{ji}^{-1} (\nu_i - \beta_i)$$

Sylvester J. Joosten (HERMES, Illinois)

▲ Ξ ► Ξ Ξ < < < </p>

Relation between true and measured quantities

$$\nu_{i} = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin}\,i} dX \int_{\text{bin}\,j} dY \int d\bar{Y} f(Y) \rho(\bar{Y}|Y) \mathcal{A}(\bar{Y}) \mathcal{M}(\bar{Y}|X)}{\int_{\text{bin}\,j} dY f(Y)} \mu_{j} + \beta_{i}$$

- Smearing matrix S is calculated using two MC simulations
- Completely model-independent if either:
 - Acceptance function A is flat within each bin
 - Distribution f is flat within each bin
- If this is not the case, a reasonable (better than 10% level) model for f is required
- This analysis: systematic uncertainty from the 1σ contour in MC parameter space

Section 2

Fragmentation in collinear DIS

< □> < Ξ> < Ξ> < Ξ| = のQ@

Factorizing the SIDIS cross section

- Separate
 - The proton structure
 - The interaction with the quasi free quarks
 - The hadronization process enforced by confinement
- These results enable:
 - Deeper understanding of the hadronization process
 - Better constrain the FFs
 - Explore the limits of a simple factorized approach

LO SIDIS cross section

$$\frac{d^3\sigma_n^h(Q^2,x,z)}{dxdQ^2dz}\propto \sum_q e_q^2 f_1^q(Q^2,x) D_q^h(Q^2,z)$$

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

Multiplicities: Projected vs z

• *u*-quark dominance

- deuteron has less u-quarks
- K⁻ pure sea object
- systematic uncertainties between particles/targets correlated
- Asymmetries and difference ratios can increase precision even further

-

One dimensional comparison with LO predictions

- Good agreement CTEQ6+DSS for π^+ and K^+ up to medium z
- CTEQ6+Kretzer performs well for pions
- Larger deviations for π⁻ and K⁻
- Room for improvement at high *z*, and in the disfavored sector

1= nac

Proton-deuteron multiplicity asymmetry

definition:

$$A^h_{d-p} \equiv \frac{M^h_d - M^h_p}{M^h_d + M^h_p}$$

- Reflects different valence quark content
- Improved precision by cancellations in the systematic uncertainty

-

Input for the next generation of FFs

- CTEQ6L+DSS perform very well up to medium z
- Larger discrepancies at high z

Sylvester J. Joosten (HERMES, Illinois)

K/π and strangeness suppression

- Very good agreement with the LO prediction
- u dominance: K⁺/π⁺ at high z shows the extra cost of producing an ss̄ compared to a dd̄.
- Strangeness suppresion larger than current parametrizations suggest
- Also observed during the HERMES MC tuning

K/π in 2 dimensions

 LO parametrizations predict the π/K ratio
 very well up to
 medium z

 At high z, LO calculations overshoot the measurement for the entire valence region

-

Section 3

Transverse momentum dependence of the multiplicities

の ク ク ビ エ ト イ ヨ ト イ モ ト イ 見

Transverse momentum dependence

- The multidimensional results provide leverage in the **quest to unfold** intrinsic quark p_T and fragmentation k_T from the transverse hadron momentum $P_{h\perp}$
 - Leverage the simultaneous binning in $P_{h\perp}$, z and x (or Q^2)
 - Access the shape of the unpolarized TMD
 - Provide a handle on flavor separation
 - Constrain TMD models and calculations

$P_{h\perp}$ dependence in the LO TMD formalism

$$\frac{d^5\sigma^h}{dxdQ^2dzd^2\vec{P}_{h\perp}} \propto \sum_q e_q^2 \int d^2\vec{p}_T d^2\vec{k}_T \delta^2(\vec{P}_{h\perp} - \vec{k}_T - z\vec{p}_T) f_1^q(x, Q^2, p_T) D_q^h(z, Q^2, k_T)$$

The shape of $P_{h\perp}$ in z slices

- Superficially consistent with the Gaussian ansatz
- Average and width function of kinematics and hadron type.

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

GHP April 2013 18 / 32

$\langle P_{h\perp} \rangle$ as a function of z

- Rising function of z
- $\langle P_{h\perp} \rangle$ for K higher than π at larger z
 - Point-to-point significance of 2σ
 - Strangeness
 suppression: at high
 z, K sample contains
 (relatively) more sea
 events than π
 - Could hint at higher intrinsic (p_T) for the sea?

1.25

$\langle P_{h\perp} \rangle$ in 2 dimensions

• Slightly falling function of x

• Also hints at higher intrinsic $\langle p_T \rangle$ for the sea

ELE DQA

Hadron charge asymmetry

- Numerator contains proportionally more valance than the denominator
- Especially at higher z
- Ratio encodes information about the shape of the intrinsic p_T distribution

-

Section 4

Pushing the envelope

Applicability of simple LO, leading-twist factorization for high-precision data at intermediate energies

Limits of the Factorization Theorem

- Factorization in x and z not exact, both from theoretical and experimental point-of-view
 - Theoretical: Reinteraction of final state quarks with the target remnant (higher-twist effects); mass effects
 - **Experimental**: Contamination of the current jet with the target jet

Mulders, AIP Conf.Proc. 588 (2001) 75-88

- ★ Effect minimized by choosing a lower rapidity limit (described by the Berger Criterion) → lower z limit for SIDIS experiments (here: > 0.2)
- Need factorization for universality!

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

GHP April 2013 23 / 32

Probing the limits in a LO, leading twist framework

LO access (assuming isospin symmetry)

$$R^{\pi}(z) \equiv 2 \frac{\int_{Acc.} dx dQ^2 (\sigma_d^{\pi^+} - \sigma_d^{\pi^-})}{\int_{Acc.} dx dQ^2 (\sigma_p^{\pi^+} - \sigma_p^{\pi^-})} - 1 \approx \frac{\int_{Acc.} dx dQ^2 (u_v - 4d_v)}{\int_{Acc.} dx dQ^2 (d_v - 4u_v)}$$
$$\rightarrow \frac{\int_{Acc.} dx dQ^2 d_v}{\int_{Acc.} dx dQ^2 u_v} \approx \frac{4R^{\pi} + 1}{4 + R^{\pi}}$$

- Pushes the experimental precision to a limit
 - A proper treatment of the correlated systematics is crucial
- Very sensitive to theoretical assumptions
 - Applicability of the LO, leading twist framework
 - Additional assumptions (eg. isospin symmetry)
- Consequences of interest for future high-precision measurements

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Pushing the envelope

• **Lowest point** $> 3\sigma$ from the prediction

- Target remnant or theory?
- Small isospin violation of the FF (as in DSS) strongly lessens the discrepancy
- ► →Probably mix
- Very good agreement for mid-to-high z
- Results generally systematics dominated
- CTEQ curve below 0.5 due to the integral over the HERMES acceptance (cfr page 4)

Pushing the envelope

- Discrepancy is a function of *z*
- Lessons
 - More precise knowledge of FF symmetries required
 - Possible target remnant influence should be carefully considered when analyzing data near the low-z limit
 - The framework holds surprizingly well mid-to-high z at intermiate energies

Section 5

Getting the data

A. Airapetian et al, Phys. Rev. D (2013) (in press) arXiv:1212.5407v1 [hep-ex]

http://www-hermes.desy.de/multiplicities

Sylvester J. Joosten (HERMES, Illinois) HERMES SIDIS multiplicities GH

伺 ト イヨト イヨト ヨヨー わくや

Getting the data: the multiplicity website

from semi-inclusive DIS on the proton represent a unique high-precision mult set that will significantly enhance our u the fragmentation of quarks into final-s

The full data set consists of a large and due to the multitude of binnings and puryour way using the filters below to locat the files you are looking for.

This is a placeholder for the full Journal reference.

- http://www-hermes.desy. de/multiplicities
- Provides all datafiles and available figures.
 - Multiplicities (differential and in various projections)
 - Both with and without the correction for exclusive vector mesons
 - Asymmetries and ratios (Proper handling of the correlated systematics)

・ロト ・ 早 ・ モ ト ・ 王 ト ・ クタマ

28 / 32

ta

http://www-hermes.desy.de/multiplicities

• Browse the data files

-	iitei Ai	• raig	OL AL	Option.	201	Dimining, Au
1-1	0 11-20	21-30	31-40	41-50	51-58	
	What	Targe	et C	ption		Binning
21	Multiplicities	Proto	n V	VM Subtracted		Q2: 9 / z: 6 / P

• Use **filters** for intuitive file selection

Filter AI -	Target: All - Option	n: All - Binning: All -	Projection: All - Extra: All -
	Proton		
1-10 11-20 2	Deuteron	51-58	
# What	All	Binning	Projection
1 Multiplicities	Proton VM Subtra	cted x: 2 / z: 10 /	Ph1:5

• Download the final results

h⊥:5		Download *
h1:5		
h1:5 z	View Plot -	т- К*
h.1.:5 z	View Plot -	к-
L:9		Covariance Matrix

• View and download available figures

-		Distance of the	111 04041000	A. 6. (6. 19 () () 6. 9		1	1
3	Multiplicities	Proton	VM Subtracted	x: 2 / z: 10 / Ph⊥: 5	z	View Plot -	t
4	Multiplicities	Declaron	MM Subtracted	v: 27 + 107 Ph + 5			

http://www-hermes.desy.de/multiplicities

• Understand what version of the data you have.

File name structure

hermes.(TARGET.)BINNING.(PROJECTION.)OPTION.WHAT.List.gz

- . TARGET : Either proton or deuteron . Blank in case of the target asymmetries.
- · BINNING : Can be z-30 , zpt-30 , z02-30 zx-30 or zxpt-30 . The binning codes are defined below in
- PROJECTION : Blank in case of the 3D data without projection, or VARIABLE-proj for projected data. For exa
 projection versus z, or zx-proj for a 2D projection versus x in z slices.
- · OPTION : Results with the vector meson contribution subtracted are labelled vesub, results without this correct
- WHAT
 - Multiplicity files are labelled mults_PARTICLE (for example: mults_piplus).
 - The covariance matrices for the multiplicities are labelled covmat_mults
 - o Target asymmetry files are labelled asymm_PARTICLE (for example: asymm_piplus).
 - The covariance matrices for the target asymmetries are labelled covmat_asymm

Get an overview of what is available.

Binning

The smearing-unfolding method to correct for QED radiative effects, limited geometric aco minimum granularity in all variables, allowing us to pursuit five different specialized binning be accomedated.

- 1. High resolution in z.
- 2. High resolution in Phi with z slices.
- 3. High resolution in x with z and Phi slices.
- A Llink rapplution O2 with a and D. . elinar

Detailed description of the different binnings.

High resolution in z

- Name: 2-30
- Profile: x: 2 / z: 10 / P_{h1}: 5
- . Use for: The projection versus z, and for analyses that benefit from the full binning p
- · Edges:

Variable	Edges
Q ² [GeV ²]	>1
x	0.023 - 0.085 - 0.6
z	0.1 - 0.15 - 0.2 - 0.25 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 - 1.1
Phi [GeV]	0.0 - 0.1 - 0.3 - 0.45 - 0.6 - 1.2

High resolution in Ph1 with z slices

- Name: zpt-30
- Profile: x: 2 / z: 6 / P_{h⊥}: 9
- Use for: The projection versus P_{b.1}, The projection versus z and P_{b.1}, and for analyt
 Edges:

Variable	Edges
Q ² [GeV ²]	> 1
х	0.023 - 0.085 - 0.6
z	0.1 - 0.2 - 0.3 - 0.4 - 0.6 - 0.8 - 1.1
Phi [GeV]	0.0 - 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 - 1.2

High resolution in x with z slices

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

・ロト ・ 早 ・ モ ト ・ 王 ト ・ クタマ

Summary

- Unique set of 3D high-precision SIDIS multiplicities for π[±] and K[±] on p and d are presented
- Enabling:
 - Evaluation of the quality of FF (and PDF) parametrizations
 - Input for the next generation of parametrizations
 - Access to the transverse distributions
 - Tests of the applicability of the usual LO, leading-twist model assumptions
- For proper interpretation at this level of precision:
 - Crucial to consider the fully differential case
 - If possible, study the possible correlations in the systematic uncertainties when calculating derived quantities
- Get the data at http://www-hermes.desy.de/multiplicities

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日日 つくべ

arXiv:1212.5407v1 [hep-ex] A. Airapetian et al, Phys. Rev. D (2013) (in press) http://www-hermes.desy.de/multiplicities

https://www.npl.illinois.edu

http://nsf.gov

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

GHP April 2013 32 / 32

▲ ∃ ► ■ |= √Q ∩

BACKUP: Effect of the correction for exclusive VM

BACKUP: SIDIS Multiplicities: Historical

