New Results from HERMES

- \Rightarrow Inclusive Deep-Inelastic Scattering
- \Rightarrow NLO QCD analysis
- $\Rightarrow b_1(x)$ Measurement
- $\Rightarrow \Delta q$ -extraction
- \Rightarrow Double Spin Asymmetries in VM Production
- $\Rightarrow Q^2$ -Dependence of ρ^0 Nuclear Transparency
- \Rightarrow Quark Fragmentation in Nuclei

Michael Tytgat University of Gent

on behalf of the HERMES Collaboration

Spin Structure of the Nucleon

Naive Parton Model : only valence quarks ($\Delta u_v + \Delta d_v = 1$) EMC 1988 : $\Delta \Sigma = 0.123 \pm 0.013 \pm 0.019$

 Include also gluons, sea quarks
 orbital angular momentum

$$S_z = \frac{1}{2}\hbar = \frac{1}{2}\left(\underbrace{\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}}_{\Delta \Sigma}\right) + \Delta g + L_z^q + L_z^g$$

 $\Delta q = \int_0^1 dx \cdot \Delta q(x)$: first moments of helicity densities

 $\begin{array}{cccc} \Delta\Sigma & & & \text{inclusive scattering} & \Delta q & & & \text{semi-inclusive scattering} \\ \Delta g & & & \text{NLO QCD analysis,} & L_{q,g} & & & & \text{GPD's ?} \\ & & & & & \text{high-}p_t \text{ hadrons} \end{array}$

Polarized Deep Inelastic Scattering _

$$\begin{aligned} \frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}E^2} &= \frac{\alpha^2 E'}{Q^2 E} L_{\mu\nu}(k,q,s) W^{\mu\nu}(P,q,S) \\ L_{\mu\nu} &: \text{ exactly calculable in QED} \\ W^{\mu\nu} &= -g^{\mu\nu} F_1(x,Q^2) + \frac{p^{\mu} p^{\nu}}{\nu} F_2(x,Q^2) \\ &+ i \epsilon^{\mu\nu\lambda\sigma} \frac{q_{\lambda}}{\nu} \left(S_{\sigma} \ g_1(x,Q^2) + \frac{1}{\nu} \left(p \cdot q S_{\sigma} - S \cdot q p_{\sigma} \right) \ g_2(x,Q^2) \right) \end{aligned}$$

Quark Parton Model :

 F_1, F_2 : unpolarized structure functions \Rightarrow momentum distribution of quarks

$$F_1(x) = \frac{1}{2} \sum_q e_q^2 \left[q^+(x) + q^-(x) \right] = \frac{1}{2} \sum_q e_q^2 q(x)$$
$$F_2(x) = 2x \ F_1(x)$$

 g_1, g_2 : polarized structure functions \Rightarrow spin distribution of quarks

$$g_1(x) = \frac{1}{2} \sum_q e_q^2 \left[q^+(x) - q^-(x) \right] = \frac{1}{2} \sum_q e_q^2 \,\Delta q(x)$$

Polarized Deep Inelastic Scattering

Measure double spin asymmetries :

$$A_{\parallel} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} = D \ (A_1 + \eta \ A_2)$$

$g_1^p(x)$ from Hydrogen

$g_1^d(x)$ from Deuterium

World Data on $xg_1(x)$

 $\Delta d_p < 0$

NLO QCD Fit ____

- Oth order : $g_1^0(x) = \frac{1}{2} \sum_q e_q^2 \Delta q(x)$, no Q^2 dependence
- LO : gluon radiation, photon-gluon fusion

Redefinition of quark distributions including Δg $g_1^{LO}(x,Q^2) = \tfrac{1}{2}\sum_q e_q^2 \Delta q(x,Q^2)$

• NLO :

 $g_1^{NLO}(x,Q^2) = \frac{1}{2} \sum_q e_q^2 \left[\Delta q + \Delta q(x,Q^2) \otimes C_q + \Delta g(x,Q^2) \otimes C_g \right]$ 2 independent NS distributions + $\Delta \Sigma + \Delta g$:

$$\begin{split} \Delta q_{NS}^p = \frac{1}{2}(2\Delta u - \Delta d - \Delta s), \qquad \Delta q_{NS}^n = \frac{1}{2}(2\Delta d - \Delta u - \Delta s)\\ \Delta \Sigma = \Delta u + \Delta d + \Delta s \end{split}$$

NLO QCD Fit _

 Q^2 evolution :

Parametrization of parton distributions at input scale Q_0^2 :

$$x\Delta q_i(x, Q_0^2) = \eta_i A_i x^{a_i} (1-x)^{b_i} \left(1 + \gamma_i x + \rho_i x^{1/2}\right)$$

Solution We with $Q^2 > 1.0$ GeV² cut

2 independent methods :

Mellin Transform & Finite Differences

Choice of Parameters

 $x\Delta q_i(x, Q_0^2) = \eta_i A_i x^{a_i} (1-x)^{b_i} (1+\gamma_i x + \rho_i x^{\frac{1}{2}})$

Method 1	Method 2
\overline{MS}	\overline{MS}
Mellin Transform	Finite differences
Δu_v , Δd_v , $\Delta ar q_s$, ΔG	Δq^p_{NS} , Δq^n_{NS} , $\Delta \Sigma$, ΔG
symmetric sea: $\Delta \bar{q}_s =$	no assumption
$\Delta \bar{u}_s = \Delta \bar{d}_s = \Delta s = \Delta \bar{s}$	(in the fit)
η_{u_v} , η_{d_v} fixed by F , D	$\eta_{q_p^{NS}}$, $\eta_{q_n^{NS}}$ fixed by F , D
$\gamma_{u_v},\gamma_{d_v} eq 0$ fixed	$\gamma_{q_p^{NS}} = \gamma_{q_n^{NS}} eq 0$ fixed
$a_G = a_{sea} + 1$	(no such
$\left. \frac{b_{\bar{q}_s}}{b_G} \right _{pol} = \frac{b_{\bar{q}_s}}{b_G} \right _{unpol} \right\} *$	{ relations
$b_{\bar{q}_s} = 8.08, \ b_G = 5.61$	$b_G = 5.61$
$\gamma_{ar{q}_s}=0$, $\gamma_G=0$	$\gamma_{\Sigma} eq 0$ fixed, $\gamma_{G} = 0$
$\rho=0$ for all densities	ho=0 for all densities
ightarrow 7 fit parameters	ightarrow 7 fit parameters
$\Lambda^{(4)}_{QCD} = 291 \pm 30 \ MeV$	$\alpha_s(M_Z^2) = 0.117 \pm 0.002$
$Q_0^2 = 4 \ GeV^2$	$Q_0^2 = 4 \ GeV^2$
data: $Q^2 > 1 \ GeV^2$	data: $Q^2 > 1 \; GeV^2$

* lead to positivity for $\Delta \bar{q}_s$ and ΔG

NLO QCD Fit

Fits are performed on $g_1(x, Q^2)$

and give a good final description

NLO QCD Fit _

$$Q_0^2 = 4.0 \; {
m GeV^2}$$

$$\mathbb{E} \Delta \Sigma = 0.201 \pm 0.103$$

$$\widehat{\Phi} \ \Delta \bar{q}_s = -0.070 \pm 0.028$$

very small sea quark polarization

NLO QCD Fit _

\square ΔG still largely unconstrained ...

Semi-Inclusive Deep Inelastic Scattering

$$\left(\vec{e} + \vec{N} \longrightarrow e + h + X \right)$$

Flavor tagging : correlation between fast hadron and struck quark flavor

Factorization of cross section :

$$\sigma^h(x,Q^2,z) \propto \sum_q e_q^2 q(x,Q^2) D_q^h(z,Q^2)$$

 $D_q^h(z,Q^2)$: fragmentation functions, $h = \pi^{\pm,0}, K^{\pm} \dots$

Δq -Extraction

$$A_1^h(x,Q^2) = \frac{\sigma_h^{1/2} - \sigma_h^{3/2}}{\sigma_h^{1/2} + \sigma_h^{3/2}} \simeq C \cdot \sum_q \underbrace{\frac{e_q^2 q(x,Q^2) \int \mathrm{d}z D_q^h(z,Q^2)}{\sum_{q'} e_{q'}^2 q'(x,Q^2) \int \mathrm{d}z D_{q'}^h(z,Q^2)}}_{P_q^h(x,Q^2)} \frac{\Delta q}{q}(x,Q^2)$$

 \mathbb{P} Purities : probability that hadron h originates from event with struck quark q

- Spin independent quantities
- Can be calculated with Monte Carlo

Solution Extract
$$\Delta q$$
 from $\vec{A} = P \cdot \vec{Q}$

$$\vec{A} = \left(A_{1,p}(x), A_{1,d}(x), A_{1,p}^{\pi^{\pm}}(x), A_{1,d}^{\pi^{\pm}}(x), A_{1,d}^{K^{\pm}}(x)\right)$$
$$\vec{Q} = \left(\frac{\Delta u}{u}, \frac{\Delta d}{d}, \frac{\Delta \bar{u}}{\bar{u}}, \frac{\Delta \bar{d}}{\bar{d}}, \frac{\Delta s + \Delta \bar{s}}{s + \bar{s}}\right)$$

Generation of Purities

- Use Monte Carlo model of DIS process (LEPTO), fragmentation process (JETSET) and detector
- Systematic uncertainties from

Unpol. PDF

 $q(x,Q^2)$

Detector

geometry

Tuning of LUND Fragmentation Model

Default JETSET settings don't work for HERMES

^{IP} Use hadron production ratios and measured hadron multiplicities N^h/N^{DIS} in (iterative) tuning procedure

HERMES Purities

Measured Hadron Asymmetries

Polarized Quark Distributions

- *u*-quark strongly polarized
- *d*-quark strongly anti-polarized
- Quark sea polarization small and $\frac{\Delta \bar{u}}{\bar{u}} \sim \frac{\Delta \bar{d}}{\bar{d}} \sim \frac{\Delta s + \Delta \bar{s}}{s + \bar{s}} \sim 0$
- No indication of negative strange sea polarization
- Good agreement with LO-QCD fits

Light Quark Sea Flavor Asymmetry

^{IEF} No evidence of flavor asymmetry $\Delta \bar{u} - \Delta \bar{d}$ in the light quark sea !

Deep Inelastic Scattering on Spin 1 Target

$$\begin{aligned} \frac{d^2\sigma}{d\Omega dE^2} &= \frac{\alpha^2 E'}{Q^2 E} L_{\mu\nu}(k,q,s) W^{\mu\nu}(P,q,S) \\ L_{\mu\nu} &: \text{ exactly calculable in QED} \\ W^{\mu\nu} &= -g^{\mu\nu} F_1(x,Q^2) + \frac{p^{\mu}p^{\nu}}{\nu} F_2(x,Q^2) \\ &\quad + i\epsilon^{\mu\nu\lambda\sigma} \frac{q_{\lambda}}{\nu} \left(S_{\sigma} g_1(x,Q^2) + \frac{1}{\nu} \left(p \cdot qS_{\sigma} - S \cdot qp_{\sigma}\right) g_2(x,Q^2)\right) \\ \text{(for spin 1} & -b_1(x,Q^2) r_{\mu\nu} + \frac{1}{6} \frac{b_2(x,Q^2)}{b_2(x,Q^2)} \left(s_{\mu\nu} + t_{\mu\nu} + u_{\mu\nu}\right) \\ &\quad \text{target }) &\quad + \frac{1}{2} \frac{b_3(x,Q^2)}{b_3(x,Q^2)} \left(s_{\mu\nu} - u_{\mu\nu}\right) + \frac{1}{2} \frac{b_4(x,Q^2)}{b_4(x,Q^2)} \left(s_{\mu\nu} - t_{\mu\nu}\right) \end{aligned}$$

4 new structure functions

in the symmetric part of hadronic tensor

 \Rightarrow not sensitive to beam polarization

b_1 Structure Function

$$F_{1}(x) = \frac{1}{3} \sum_{q} e_{q}^{2} \left[q^{+}(x) + q^{-}(x) + q^{0}(x) \right]$$

$$g_{1}(x) = \frac{1}{2} \sum_{q} e_{q}^{2} \left[q^{+}(x) - q^{-}(x) \right]$$

$$b_{1}(x) = \frac{1}{2} \sum_{q} e_{q}^{2} \left[2q^{0}(x) - (q^{-}(x) + q^{+}(x)) \right]$$

$$b_{2}(x) = 2x \frac{(1+R)}{(1+\gamma^{2})} b_{1}(x)$$

 $b_3 \& b_4$ higher twist functions

Solution $b_1(x)$ measures difference in parton distributions of m = 1 and m = 0 target

 \mathbb{R} In principle needed for g_1/F_1 measurement

$$\sigma_{meas} = \sigma_u \left[1 + P_b \ V \ A_{\parallel} + \frac{1}{2} \ T \ A_T \right]$$

HERMES : $< T >= 0.83 \pm 0.03 \qquad < V >= 10^{-2}$

The Tensor Asymmetry A_T

$b_{1,2}^d$ Structure Function

K. Bora and R.L. Jaffe, PRD57 (1998) 6906 B^d signif. different from zero at low x

Exclusive Vector Meson Production @ HERMES

 $e + p, A \rightarrow e + p + \rho^0, \omega, \phi$ $0.5 < Q^2 < 5.0 \text{ GeV}^2,$ 4.0 < W < 6.0 GeV, $t < 0.5 \text{ GeV}^2$

 ρ^0 , ω production at HERMES is dominated by quark exchange, ϕ production dominated by gluon exchange

Double Spin Asymmetry in VM Production

Coherence Length Effect in ρ^0 **Production**

Coherence length :
$$l_c = \frac{2\nu}{Q^2 + M_{q\bar{q}}^2}$$

 $l_a << r_A$; weak EM ISI

 $l_c >> r_A$: hadronic ISI

Examine nuclear transparency : $T = \frac{\sigma_A}{A \cdot \sigma_p}$ to look for color transparency (¹⁴N data)

Incoherent production : coherence length effect can minic CT effects for $l_c << r_A$

^{ICF} Coherent production : nuclear form factor suppression at small l_c

Color Transparency in ρ^0 Production

Fit Q^2 -dependence of $T^{coh/incoh}$ in l_c -bins with common slope

	Q^2 -dep. slope	Kopeliovich <i>et al.</i>
¹⁴ N coherent	$0.070 \pm 0.021 \pm 0.017$	0.060
¹⁴ N incoherent	$0.089 \pm 0.046 \pm 0.020$	0.048

Positive Q^2 slope indication of onset of Color Transparency

Fragmentation in Nuclear Environment

 $au_f = l_f/c$ hadron formation time

Nucleus acts as an ensemble of targets for the struck quark and produced hadron

Hadron production from nuclei is influenced by pre-hadronized quark interactions & produced hadron interactions with spectator nucleons

 \rightarrow Models : hadronization process (phenomenological + QCD based models) + nuclear absorption

2 ~ 2 \ 1

$$\overset{\text{\tiny Reduction of multiplicity of } R^h_M(z,\nu,p_t^2,Q^2) = \frac{\frac{N_h(z,\nu,p_t^2,Q^2)}{N_e(\nu,Q^2)}\Big|_A}{\frac{N_h(z,\nu,p_t^2,Q^2)}{N_e(\nu,Q^2)}\Big|_D}$$

Use HERMES data on 14 N, 84 Kr, (4 He, 20 Ne) with z > 0.2 & $\nu > 7$ GeV

Charged Hadron Multiplicity Ratios (¹⁴**N)**

(solid, Kopeliovich et al.) Gluon bremsstrahlung model for pions

Charged Hadron Multiplicity Ratios (¹⁴**N**, ⁸⁴**Kr)**

Model calculations : (solid, Accardi *et al.*) rescaling of quark fragmentation functions + nuclear absorption; (dot-dashed, Wang *et al.*) medium modification of parton fragmentation due to multiple scattering and gluon bremsstrahlung (tuned to ^{14}N data)

 $\pi^{\pm,0}$, K^{\pm} , $p \& \bar{p}$ Multiplicity Ratios (⁸⁴Kr)

Attenuation vs. p_t^2

Broadening of p_t distribution on nuclear target due to multiple scattering of propagating quark and hadron, ie. Cronin effect

Effect observed previously in heavy-ion and hadron-nucleus scattering

Enhancement predicted to occur at $p_t \sim 1-2 \; {\rm GeV}$

Possible A-dependence of Cronin effect in DIS

Summary _____

- New NLO QCD fit to world data on $g_1(x,Q^2)$
- $\Delta u(x)$ and $\Delta d(x)$ known to good precision, consistent with NLO fits of inclusive data
- First direct extraction of $\Delta \bar{u}(x)$, $\Delta \bar{d}(x)$ and $\Delta s(x)$, no significant polarization of the light quark sea
- First measurement of b_1^d , small but different from zero
- Measurement of double spin asymmetry in vector meson production on proton and deuteron
- Indication of color transparency effect in ρ^0 production on ¹⁴N
- First measurement of nuclear attenuation of pions, kaons and (anti)protons electroproduction in ⁸⁴Kr.
- Observation of Cronin effect in DIS