## **DVCS** with the HERMES Recoil Detector

### Jennifer Bowles, Caroline Riedl and Sergey Yaschenko

# on behalf of the hermes collaboration



DIS2011, Newport News, 14 April 2011



## **Generalized Parton Distributions (GPDs)**



- Include Form Factors and Parton Distribution Functions as moments and forward limits, respectively
- Multidimensional description of nucleon structure (longitudinal momentum vs. transverse position)
- Access to the quark total angular momentum via Ji relation

 $J_{q} = \lim_{t \to 0} \int dx \, x \Big[ H_{q} \big( x, \xi, t \big) + E_{q} \big( x, \xi, t \big) \Big]$ 

X. Ji, Phys. Rev. Lett. 78 (1997) 610





## Access to GPDs via Exclusive Processes



- Sensitivity of different final states to different GPDs
- For spin-1/2 target 4 chiral-even leading-twist quark GPDs:  $H, E, \tilde{H}, \tilde{E}$
- $H, \tilde{H}$  conserve nucleon helicity,  $E, \tilde{E}$  involve nucleon helicity flip
- DVCS  $(\gamma) \rightarrow H, E, \tilde{H}, \tilde{E}$
- Vector mesons  $(\rho, \omega, \phi) \rightarrow H, E$
- Pseudoscalar mesons  $(\pi, \eta) \rightarrow \widetilde{H}, \widetilde{E}$



## Deeply Virtual Compton Scattering (DVCS)



- DVCS and Bethe-Heitler: same initial and final state  $\rightarrow$  interference
- Bethe-Heitler dominates at HERMES kinematics
- GPDs accessible through azimuthal asymmetries





## **Unique DVCS Measurements at HERMES**

- Both beam charges
- Longitudinal beam polarization (both helicities)
- Longitudinally polarized H and D targets
- Transversely polarized H target

Access to large number of asymmetry amplitudes

Unpolarized H, D and nuclear targets

#### Recoil Detector





## HERMES with the Recoil Detector (2006-2007)



- Two beam helicities, 27.57 GeV electron and positron beams
- Unpolarized hydrogen and deuterium targets





## **DVCS** Measurements without and with Recoil Detector



Pre-Recoil data

р

- Scattered lepton and photon were detected in the forward spectrometer —
- Recoil proton was not detected \_
- Exclusivity achieved via missing mass technique
- Associated processes (e.g.  $ep \rightarrow e\Delta\gamma$ ) were not resolved (12% contribution)
- Recoil data
  - Detection of recoil proton
  - Suppression of the background to <1% level





## **Azimuthal Asymmetries in DVCS**

- Charge-difference beam-helicity asymmetry

$$A_{LU}^{\prime}(\phi) = \frac{\left(\sigma^{+\rightarrow} - \sigma^{+\leftarrow}\right) - \left(\sigma^{-\rightarrow} - \sigma^{-\leftarrow}\right)}{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) + \left(\sigma^{-\rightarrow} + \sigma^{-\leftarrow}\right)} = -\frac{1}{D(\phi)} \frac{X_B}{y} \sum_{n=1}^2 \frac{S_n^{\prime}}{S_n^{\prime}} \sin(n\phi)$$

Charge-averaged beam-helicity asymmetry

$$\mathcal{A}_{LU}^{DVCS}(\phi) = \frac{\left(\sigma^{+\rightarrow} - \sigma^{+\leftarrow}\right) + \left(\sigma^{-\rightarrow} - \sigma^{-\leftarrow}\right)}{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) + \left(\sigma^{-\leftarrow} + \sigma^{-\rightarrow}\right)} = \frac{1}{D(\phi)} \cdot \frac{\mathbf{x}_{B}^{2} t \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}{Q^{2}} \mathbf{s}_{1}^{DVCS} \sin(\phi)$$

- Separation of contributions from DVCS and interference term
- Impossible in case of single-charge beam-helicity asymmetry

$$A_{LU}(\phi) = \frac{\sigma^{\rightarrow} - \sigma^{\leftarrow}}{\sigma^{\rightarrow} + \sigma^{\leftarrow}}$$





## Beam-Helicity Asymmetry without Recoil Detector (2006-07 data)



Data from 2006-2007 analyzed without the Recoil Detector are in agreement with previously published data from 1996-2005

Associated processes are part of signal



## **HERMES Recoil Detector**



1 Tesla superconducting solenoid

#### Photon Detector (PD)

- detect gammas
- p/ $\pi$  PID for momentum > 600 MeV/c

#### Scintillating Fiber Tracker (SFT)

Momentum reconstruction by bending in magnetic field

#### Silicon Strip Detector (SSD)

- Inside the HERA vacuum
- 5 cm close to the beam
- Momentum reconstruction by energy deposit for protons and deuterons

#### Target cell

- Unpolarized hydrogen and deuterium targets





## Momentum Reconstruction in the Recoil Detector



- Momentum reconstruction by bending in the magnetic field
- Improved momentum reconstruction for protons using bending in the magnetic field and energy deposits in both silicon layers





## **DVCS** Analysis with the Recoil Detector

- Analysis of 2006-2007 data with fully operational Recoil Detector with positron beam
- Extraction of single-charge beam-helicity asymmetry
- The same selection criteria for scattered electron and photon as in the analysis without the Recoil Detector
- No requirements for the missing mass
- Use kinematic event fitting
- Background-free event sample





## **DVCS Event Selection with the Recoil Detector**

- Kinematic event fitting technique
  - All 3 particles in final state detected  $\rightarrow$  4 constraints from energy-momentum conservation
  - Selection of elastic DVCS with high efficiency (~84%)
  - Allows to suppress background from associated and semi-inclusive processes to a negligible level (~0.1%)



## Beam-Helicity Asymmetry with the Recoil Detector



Asymmetry amplitudes for elastic data sample (background < 0.1%)</p>





## **DVCS Event Samples**

- Comparison with results obtained without Recoil Detector
  - Different kinematic phase space (most essential at low –t)
- Select a data sample in similar kinematic phase space to separate the effect from associated background from difference in kinematics
- Create an event sample with 'hypothetical proton' expected in Recoil Detector acceptance
  - Do not use any Recoil Detector information
  - Calculate kinematics of expected proton using measured kinematics of electron and photon assuming the proton mass (1C kinematic fitting)
  - Apply requirements of Recoil Detector acceptance
- Compare 3 data samples: with Recoil Detector, in Recoil Detector acceptance and without Recoil Detector



## **DVCS Event Samples**

## Without Recoil Detector

## In Recoil Detector acceptance

#### With Recoil Detector





## Comparison with Results in Recoil Detector Acceptance



 Indication that the leading amplitude for elastic process (background < 0.1%) is slightly larger in magnitude than the one in Recoil Detector acceptance



## **Comparison of All DVCS Data Samples**



 Extraction of asymmetry amplitudes for associated processes is a subject of ongoing dedicated analysis





## Summary

 Background-free measurement of beam-helicity asymmetry in DVCS first physics results from the HERMES Recoil Detector







19