Exclusive Processes at Hermes

HEP 2005, LISBOA, PORTUGAL, JULY 2005

Outline

- Motivation
- Deeply Virtual Compton Scattering
- DVCS Measurements at HERMES
- Summary and Outlook

Motivation — Nucleon Structure

Motivation — Nucleon Structure

) $\cdot \bar{\mathbf{p}}$ Generalized Parton Distributions $\Rightarrow J_q, J_g$ <u>Ji's Sum Rule</u> — Ji, PRL 78 (1997) 610 $\mathbf{J}_{q,g} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \cdot x \cdot [H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)]$

How to Access GPDs?

- GPDs constrained by known quantities (FFs, PDFs, ...) and accessible in exclusive processes.
- At large Q^2 and small t, exclusive electroproduction of real photons or mesons can be factorized into a hard, perturbative part and a soft, non-perturbative part (GPDs).

 \mathbf{e}

- Deeply Virtual Compton Scattering
 - $e + N \rightarrow e' + N' + \gamma$
 - described by GPDs $H, E, \widetilde{H}, \widetilde{E}$,
 - simplest process, gluons absent in the leading order.
- Exclusive Meson Production
 - $e + N \rightarrow e' + N' + \left(\rho^0, \pi, \dots\right)$
 - vector mesons (ρ^0, ω, ϕ) : H, E,
 - **9** pseudoscalar mesons (π, η) : $\widetilde{H}, \widetilde{E}$,
 - pion pairs $(\pi^+\pi^-)$: *H*, *E*,
 - meson distribution amplitude should be taken care of.

Deeply Virtual Compton Scattering

DVCS (a) and Bethe-Heithler (b) processes have the same initial and final states:

Interference between DVCS and Bethe-Heitler:

$$d\sigma(\mathrm{eN} \to \mathrm{eN}\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \underbrace{\mathcal{T}_{BH}\mathcal{T}_{DVCS}^* + \mathcal{T}_{BH}^*\mathcal{T}_{DVCS}}_{\mathcal{I}}$$

9 T_{BH} is parameterized in terms of Dirac and Pauli Form Factors F_1, F_2 , calculable in QED.

- **9** \mathcal{T}_{DVCS} is parameterized in terms of Compton form factors (convolution of GPDs) $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$.
- At HERMES kinematics, $\mathcal{T}^{BH} \gg \mathcal{T}^{DVCS}$, $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$ are accessed through \mathcal{I} .

Azimuthal Asymmetries in DVCS

 $d\sigma(\mathrm{eN} \to \mathrm{eN}\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \mathcal{T}_{BH}\mathcal{T}_{DVCS}^* + \mathcal{T}_{BH}^*\mathcal{T}_{DVCS}$

Induces azimuthal asymmetries in the cross-section:

- Beam-charge asymmetry $A_C(\phi)$: $d\sigma(e^+, \phi) d\sigma(e^-, \phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos \phi$
- Beam-spin asymmetry $A_{LU}(\phi)$: $d\sigma(\vec{e}, \phi) d\sigma(\vec{e}, \phi) \propto \operatorname{Im}[F_1\mathcal{H}] \cdot \sin \phi$
- Longitudinal target-spin asymmetry $A_{UL}(\phi)$: $d\sigma(\stackrel{\Leftarrow}{P}, \phi) - d\sigma(\stackrel{\Rightarrow}{P}, \phi) \propto \operatorname{Im}[F_1 \widetilde{\mathcal{H}}] \cdot \sin \phi$
- Transverse target-spin asymmetry $A_{UT}(\phi, \phi_s)$: $d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi)$ $\propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S)\cos\phi + \operatorname{Im}[F_2\widetilde{\mathcal{H}} - F_1\xi\widetilde{\mathcal{E}}] \cdot \cos(\phi - \phi_S)\sin\phi$

 \implies the only place \mathcal{E} enters in the leading order $\implies A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ sensitive to J_q

$$J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \cdot x \cdot [H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)]$$

 \mathcal{T}_{\cdot}

 \vec{k}'

 \boldsymbol{k}

 \overline{x}

 ϕ_S

Azimuthal Asymmetries in DVCS

 $d\sigma(\mathrm{eN} \to \mathrm{eN}\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \mathcal{T}_{BH}\mathcal{T}_{DVCS}^* + \mathcal{T}_{BH}^*\mathcal{T}_{DVCS}$

- \mathcal{I} induces azimuthal asymmetries in the cross-section:
 - Beam-charge asymmetry $A_C(\phi)$: $d\sigma(e^+,\phi) - d\sigma(e^-,\phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos\phi$
 - Beam-spin asymmetry $A_{LU}(\phi)$: $d\sigma(\vec{e},\phi) - d\sigma(\vec{e},\phi) \propto \operatorname{Im}[F_1\mathcal{H}] \cdot \sin\phi$
 - Longitudinal target-spin asymmetry $A_{UL}(\phi)$: $d\sigma(\overleftarrow{P}, \phi) - d\sigma(\overrightarrow{P}, \phi) \propto \operatorname{Im}[F_1 \widetilde{\mathcal{H}}] \cdot \sin \phi$
 - Transverse target-spin asymmetry $A_{UT}(\phi, \phi_s)$: $d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi)$ $\propto \operatorname{Im}[F_2 \mathcal{H} - F_1 \mathcal{E}] \cdot \sin(\phi - \phi_S) \cos\phi + \operatorname{Im}[F_2 \widetilde{\mathcal{H}} - F_1 \xi \widetilde{\mathcal{E}}] \cdot \cos(\phi - \phi_S) \sin\phi$

 \implies the only place \mathcal{E} enters in the leading order $\implies A_{IIT}^{\sin(\phi-\phi_S)\cos\phi}$ sensitive to J_a

$$J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \cdot x \cdot [H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)]$$

 \mathcal{T}_{\cdot}

 \vec{k}'

k

 \overline{x}

 ϕ_S

Azimuthal Asymmetries in DVCS

 $d\sigma(\mathrm{eN} \to \mathrm{eN}\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \mathcal{T}_{BH}\mathcal{T}_{DVCS}^* + \mathcal{T}_{BH}^*\mathcal{T}_{DVCS}$

Induces azimuthal asymmetries in the cross-section:

- Beam-charge asymmetry $A_C(\phi)$: $d\sigma(e^+, \phi) d\sigma(e^-, \phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos \phi$
- Beam-spin asymmetry $A_{LU}(\phi)$: $d\sigma(\vec{e}, \phi) d\sigma(\vec{e}, \phi) \propto \operatorname{Im}[F_1\mathcal{H}] \cdot \sin \phi$
- Longitudinal target-spin asymmetry $A_{UL}(\phi)$: $d\sigma(\overleftarrow{P}, \phi) - d\sigma(\overrightarrow{P}, \phi) \propto \operatorname{Im}[F_1 \widetilde{\mathcal{H}}] \cdot \sin \phi$
- Transverse target-spin asymmetry $A_{UT}(\phi, \phi_s)$: $d\sigma(\phi, \phi_S) d\sigma(\phi, \phi_S + \pi)$ $\propto \operatorname{Im}[F_2\mathcal{H} F_1\mathcal{E}] \cdot \sin(\phi \phi_S)\cos\phi + \operatorname{Im}[F_2\widetilde{\mathcal{H}} F_1\xi\widetilde{\mathcal{E}}] \cdot \cos(\phi \phi_S)\sin\phi$

 \implies the only place \mathcal{E} enters in the leading order $\implies A_{\rm UT}^{\sin(\phi-\phi_{\rm S})\cos\phi}$ sensitive to J_q

$$J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \cdot x \cdot [H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)]$$

 \mathcal{T}_{\cdot}

Fixed target experiment, Forward spectrometer

- Tracking: $\delta P/P < 2\%$, $\delta \theta < 1$ mrad
- Particle Identification: $\epsilon_e > 99\%$, hadron contamination < 1%
- Photons: calorimeter $\delta E_{\gamma}/E_{\gamma} \sim 5\%$
- Recoiling protons not detected ⇒ missing mass technique $(ep \rightarrow e'p\gamma)$ $M_x^2 = (P_e + P_p - P_{e'} - P_{\gamma})^2$

Background contribution $\sim 5\%$ is determined from MC and corrected.

Fixed target experiment, Forward spectrometer

- Tracking: $\delta P/P < 2\%$, $\delta \theta < 1$ mrad
- **Particle Identification:** $\epsilon_e > 99\%$, hadron contamination < 1%
- Photons: calorimeter $\delta E_{\gamma}/E_{\gamma} \sim 5\%$
- Recoiling protons not detected \Rightarrow missing mass technique ($ep \rightarrow e'p\gamma$)

$$M_x^2 = (P_e + P_p - P_{e'} - P_{\gamma})^2$$

Background contribution $\sim 5\%$ is determined from MC and corrected.

Fixed target experiment, Forward spectrometer

- Tracking: $\delta P/P < 2\%$, $\delta \theta < 1$ mrad
- **Particle Identification:** $\epsilon_e > 99\%$, hadron contamination < 1%
- Photons: calorimeter $\delta E_{\gamma}/E_{\gamma} \sim 5\%$
- Recoiling protons not detected \Rightarrow missing mass technique ($ep \rightarrow e'p\gamma$)

$$M_x^2 = (P_e + P_p - P_{e'} - P_{\gamma})^2$$

9 Background contribution $\sim 5\%$ is determined from MC and corrected.

Fixed target experiment, Forward spectrometer

- Tracking: $\delta P/P < 2\%$, $\delta \theta < 1$ mrad
- **Particle Identification:** $\epsilon_e > 99\%$, hadron contamination < 1%
- Photons: calorimeter $\delta E_{\gamma}/E_{\gamma} \sim 5\%$
- Recoiling protons not detected \Rightarrow missing mass technique ($ep \rightarrow e'p\gamma$)

$$M_x^2 = (P_e + P_p - P_{e'} - P_{\gamma})^2$$

Background contribution $\sim 5\%$ is determined from MC and corrected.

Beam-Charge Asymmetry:

$$A_C(\phi) = \frac{d\sigma(e^+, \phi) - d\sigma(e^-, \phi)}{d\sigma(e^+, \phi) + d\sigma(e^-, \phi)} \propto \operatorname{Re}\left[F_1\mathcal{H}\right] \cdot \cos\phi$$

proton: $A_C^{\cos \phi} = 0.059 \pm 0.028(stat)$ deuteron: $A_C^{\cos \phi} = 0.061 \pm 0.018(stat)$

GPD Model: M.Vanderhaeghen et al. PRD 60 (1999) 094017

- *t*-dependence of BCA can be used to constrain GPD models
- Iimited by e^-p sample (L $\sim 10 \text{ pb}^{-1}$), HERMES is running with e^- beam in 2005.

Beam-Spin Asymmetry:

--- [HERMES, PRL 87 (2001) 182001]

$$A_{LU}(\phi) = \frac{1}{|P_B|} \cdot \frac{d\sigma(\vec{e}, \phi) - d\sigma(\overleftarrow{e}, \phi)}{d\sigma(\vec{e}, \phi) + d\sigma(\overleftarrow{e}, \phi)} \propto \operatorname{Im}\left[F_1\mathcal{H}\right] \cdot \sin\phi$$

proton: $A_{LU}^{\sin \phi} = -0.18 \pm 0.03(stat)$ deuteron: $A_{LU}^{\sin \phi} = -0.15 \pm 0.03(stat)$

Longitudinal Target-Spin Asymmetry in DVCS

Longitudinal Target-Spin Asymmetry:

$$A_{UL}(\phi) = \frac{1}{|P_T|} \cdot \frac{d\sigma(\overleftarrow{P}, \phi) - d\sigma(\overrightarrow{P}, \phi)}{d\sigma(\overleftarrow{P}, \phi) + d\sigma(\overrightarrow{P}, \phi)} \propto \operatorname{Im}[F_1 \widetilde{\mathcal{H}}] \cdot \sin\phi$$

proton: $A_{UL}^{\sin \phi} = -0.071 \pm 0.034(stat)$ deuteron: $A_{UL}^{\sin \phi} = -0.036 \pm 0.024(stat)$

Transverse Target-Spin Asymmetry in DVCS

Transverse Target-Spin Asymmetry:

$$\begin{aligned} A_{UT}(\phi,\phi_s) &= \frac{1}{|P_T|} \cdot \frac{d\sigma(P^{\uparrow},\phi,\phi_s) - d\sigma(P^{\Downarrow},\phi,\phi_s')}{d\sigma(P^{\uparrow},\phi,\phi_s) + d\sigma(P^{\Downarrow},\phi,\phi_s')} \\ &\propto \quad \mathrm{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S)\cos\phi + \mathrm{Im}[F_2\tilde{\mathcal{H}} - F_1\xi\tilde{\mathcal{E}}] \cdot \cos(\phi - \phi_S)\sin\phi \end{aligned}$$

Transverse Target-Spin Asymmetry in DVCS

 $A_{UT}(\phi,\phi_s) \propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S)\cos\phi + \operatorname{Im}[F_2\mathcal{H} - F_1\xi\tilde{\mathcal{E}}] \cdot \cos(\phi - \phi_S)\sin\phi$

- $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ sensitive to J_u and not to GPD model parameters (hep-ph/0506264)
- \implies allows extraction of J_u within these GPD models
- More data is coming (HERMES 2005 $e^-p^{\uparrow\uparrow}$, about the same statistics as here)

Summary and Outlook

- Measurements of exclusive processes can increase our knowledge on the nucleon structure by determining the Generalized Parton Distributions.
- Measurement of the Transverse Target-Spin Asymmetry in DVCS will allow the first determination of J_u through certain GPD models.
- Dedicated study on exclusive processes at HERMES with the new recoil detector starts at the end of 2005 (BSA, BCA in DVCS):
 - Allows to detect the recoiling proton
 - Background 'free' DVCS: Background $\sim 5\% \Rightarrow < 1\%$
 - \Rightarrow Talk by Nils Pickert (404)

Summary and Outlook

- Measurements of exclusive processes can increase our knowledge on the nucleon structure by determining the Generalized Parton Distributions.
- Measurement of the Transverse Target-Spin Asymmetry in DVCS will allow the first determination of J_u through certain GPD models.
- Dedicated study on exclusive processes at HERMES with the new recoil detector starts at the end of 2005 (BSA, BCA in DVCS) :
 - Allows to detect the recoiling proton
 - Background 'free' DVCS: Background ~ $5\% \Rightarrow < 1\%$
 - \Rightarrow Talk by Nils Pickert (404)

Backup Slides!

Backup Slides!

Nucleon Structure

Nucleon Form Factors

well known, measured by e.g. elastic scattering:

 $e + N \rightarrow e' + N$

- provide the 1st direct knowledge about the internal structure of the nucleon ^[Hofstadter1955-61]
- Parton Distribution Functions
 - measured through e.g. deep inelastic scattering:

 $e+N \to e'+h+X$

- unpolarized quark density q(x)
- Iongitudinal spin density $\Delta q(x) = q^{\Rightarrow}(x) q^{\Leftarrow}(x)$
- transverse spin density $\delta q(x) = q^{\uparrow \uparrow \uparrow}(x) q^{\uparrow \Downarrow}(x)$
- gluon polarization $\Delta G/G$
- Generalized Parton Distributions
 - accessible in exclusive processes, e.g.:

 $e + N \rightarrow e' + \gamma + N$

- provide a 3D picture of the nucleon structure
- ${}_{igstacesisesistic}$ access the total angular momentum of quark ${\sf J}_q$

Generalized Parton Distributions

 $GPDs \Rightarrow Form Factors:$

 $\int_{-1}^{1} dx \cdot H_{q}(x,\xi,t) = F_{1}^{q}(t),$ $\int_{-1}^{1} dx \cdot E_q(x,\xi,t) = F_2^q(t),$ $\int_{-1}^{1} dx \cdot \tilde{H}_{q}(x,\xi,t) = G_{A}^{q}(t),$ $\int_{-1}^{1} dx \cdot \tilde{E}_{q}(x,\xi,t) = G_{P}^{q}(t).$

- $GPDs \Rightarrow PDFs$:
 - $H_{q}(x,0,0) = q(x), \tilde{H}_{q}(x,0,0) = \Delta q(x).$ $H_{q}(x,0,0) = q(x), H_{q}(x,0,0) = \Delta q(x).$
- $GPDs \Rightarrow impact parameter dependent PDFs$:

 $H_q(x,0,-\Delta_{\perp}^2) \rightarrow q(x,b_{\perp}),$ $\tilde{H}_{q}(x,0,-\Delta_{\perp}^{2}) \rightarrow \Delta q(x,b_{\perp}).$

 $GPDs \Rightarrow$ Total Angular Momentum of Partons $J_{q,q} = \frac{1}{2} \int_{-1}^{1} dx \cdot x [H_{q,q}(x,\xi,0) + E_{q,q}(x,\xi,0)]$

Exclusive Meson Production

TTSA in ρ^0 **Production**

Transverse Target-Spin Asymmetry:

$$A_{UT}(\phi, \phi_s) = \frac{1}{|P_T|} \cdot \frac{d\sigma(P^{\uparrow}, \phi, \phi_s) - d\sigma(P^{\Downarrow}, \phi, \phi_s)}{d\sigma(P^{\uparrow}, \phi, \phi_s) + d\sigma(P^{\Downarrow}, \phi, \phi_s)}$$

$$\propto E \cdot H \sin(\phi - \phi_S)$$

✓ Large negative asymmetry at low x and large t ✓ $A_{UT}^{\sin(\phi-\phi_S)}$ sensitive to J_u (hep-ph/0506264), no direct theoretical comparison yet

π^+ Cross-Section Measurement

Background estimated from π^- yield.

π^+ Cross-Section Measurement

GPD Model: M.Vanderhaeghen et al.

- $$\begin{split} \sigma_{tot} &= \sigma_T + \epsilon \sigma_L, \, \text{L/T separation not} \\ \text{possible, but:} \\ \sigma_T \text{ suppressed by } 1/Q^2 \\ \text{At HERMES kinematics, } 0.8 < \epsilon < 0.96 \end{split}$$
- At large Q^2 , σ_L dominates

- \square Q² dependence is in general agreement with the theoretical expectation
- Power corrections (k_{\perp} and soft overlap) calculations overestimate the data

