URL: https://www.desy.de/news/news_search/index_eng.html
Breadcrumb Navigation
DESY News: X-ray view of subducting tectonic plates
News
News from the DESY research centre
X-ray view of subducting tectonic plates
Earth’s thin crust softens considerably when it dives down into the Earth attached to a tectonic plate. That is demonstrated by X-ray studies carried out using DESY’s X-ray source PETRA III on a mineral which occurs in large quantities in basaltic crust. This softening can even cause the crust to peel away from the underlying plate, as an international team led by Hauke Marquardt from the University of Oxford reports in the scientific journal Nature. The delaminated crust has different physical properties from the rest of the mantle, which may explain anomalies in the speed with which seismic waves propagate through the mantle.

View into the Earth's interior: The investigation conditions correspond to a depth of up to 1300 kilometres. Credit: DESY, Franziska Lorenz & Jochen Stuhrmann/illustrato
Using a special apparatus at DESY’s Extreme Conditions Beamline (P02.2) at PETRA III, the team has now succeeded in artificially producing davemaoite and examining it with X-rays. To do this, the scientists heated finely ground wollastonite (CaSiO3) to around 900 degrees Celsius at high pressure, until davemaoite was formed. The mineral was then deformed by applying an increasing pressure of up to 57 gigapascals – around 570,000 times atmospheric pressure at sea level – and examined using X-rays. These parameters correspond to the conditions encountered at depths of up to 1300 kilometres.

The Earth's interior in the laboratory: The sample is heated in the evacuated experimental chamber, while high pressure is applied using two ultra-hard diamond anvils. Throughout the entire process, the sample can be irradiated and analysed using PETRA III’s high-brilliancy X-ray beam. Credit: University of Oxford, Hauke Marquardt
Scientists have long speculated about such a detachment because the separated crust could cause the characteristic changes in the velocities of seismic waves that are observed at different depths. Until now, however, it has been unclear what causes could lead to such a delamination. “I am glad that the experimental setup we have come up with here is able to help solve important questions linked to processes occurring deep inside our planet,” says DESY’s Hanns-Peter Liermann, who is in charge of the Extreme Conditions Beamline at PETRA III and a co-author of the study.
Researchers from the Universities of Bayreuth, Oxford and Utah, as well as from the GFZ German Research Centre for Geosciences in Potsdam, the California Institute of Technology and DESY were involved in the study. The project was funded in part by Deutsche Forschungsgemeinschaft DFG.
Reference:
Weak cubic CaSiO3 perovskite in the Earth’s mantle; J. Immoor, L. Miyagi, H.-P. Liermann, S. Speziale, K. Schulze, J. Buchen, A. Kurnosov & H. Marquardt; Nature, 2022; DOI: 10.1038/s41586-021-04378-2