next up previous
Next: Bibliography Up: QCDINS homepage Previous: Package description

DOUBLE PRECISION FUNCTION Q2SIG(XPRIME,QLAM,KAPPA,LOOPFL,NF) - Instanton-induced hard subprocess total cross section




Calculation of

\begin{displaymath}
Q^{\prime 2}\ \sigma^{(I)}_{q^\prime g}\ [{\rm nb}\ {\rm GeV}^2],
\end{displaymath} (1)

where $\sigma^{(I)}_{q^\prime g}$ is the instanton-induced total hard subprocess cross section taken from Ref. [1], as a function of ${\rm XPRIME}=x^\prime$, ${\rm QLAM}=Q^{\prime}/\Lambda^{(n_f)}_{\overline{\rm MS}}$ and ${\rm KAPPA}=\mu_r/Q^\prime$, ${\rm LOOPFL}=\{1,2,3\}$ and ${\rm NF}=n_f$.

Q2SIG uses the form of the cross section derived in Ref. [1],

$\displaystyle Q^{\prime\,2}\,\sigma_{q^\prime g}^{(I )}$ $\textstyle =$ $\displaystyle d^2_{\overline{\rm MS}}\frac{\sqrt{12}}{2^{16}}\pi^{15/2}
((\xi_\...
...} \frac{\Delta_1\beta_0}{D(\tilde{S})}\right)^{7/2}
\omega (\xi_\ast )^{2n_f-1}$ (2)
    $\displaystyle \times
\frac{(\xi_\ast -2)^3 v^{\ast\,5}
}
{(v_\ast -\tilde{S})^{...
...t ) D\left( \ln \left( \frac{D(\tilde{S})}{\sqrt{\xi_\ast -2}}
\right)\right)}}$  
    $\displaystyle \times
\left( \frac{4\pi}
{\alpha_{\overline{\rm MS}}\left(\mu _r...
...t(1-\ln\left(\frac{v_\ast\mu_r}{Q^\prime}\right)\right)
\,\tilde{S}\right] \, ,$  

expressed entirely in terms of the collective coordinate saddle points $v_\ast\equiv Q^\prime\rho_\ast$ and $\xi_\ast$, satisfying
$\displaystyle \frac{1}{2}\frac{\sqrt{\frac{1-{x^\prime}}{{x^\prime}}}}
{\sqrt{\...
...\left(\rho_\ast\mu_r\right)\right)
\frac{dS^{(I\overline{I})}}{d\xi}(\xi_\ast )$ $\textstyle =$ $\displaystyle 0 \,,$ (3)
$\displaystyle \left(
\frac{1}{2}\,\sqrt{\frac{1-{x^\prime}}{{x^\prime}}} \sqrt{...
...ht) Q^\prime\rho_\ast+
\Delta_1\beta_0 S^{(I\overline{I})}(\xi_\ast )
-\Delta_2$ $\textstyle =$ $\displaystyle 0\, .$ (4)

In Eq. (2) we have introduced the shorthands
\begin{displaymath}
\tilde{S}(\xi_\ast )\equiv \Delta_1 \beta_0 S^{(I\overline{I...
...(\xi_\ast ))\equiv
\frac{d}{d\ln (\xi_\ast -2)}f(\xi_\ast ) ,
\end{displaymath} (5)

as well as the following parameters
$\displaystyle d_{\overline{\rm MS}}$ $\textstyle =$ $\displaystyle \frac{{\rm e}^{5/6}}{\pi^2}\,{\rm e}^{-4.534+0.292\,n_f}
,$ (6)
$\displaystyle \Delta_1$ $\textstyle \equiv$ $\displaystyle 1+\frac{\beta_1}{\beta_0}
\frac{\alpha_{\overline{\rm MS}}(\mu_r)...
...ex}
\Delta_2\equiv 12\,\beta_0
\frac{\alpha_{\overline{\rm MS}}(\mu_r)}{4\pi} ,$ (7)
$\displaystyle \beta_0$ $\textstyle =$ $\displaystyle 11-\frac{2}{3}n_f;
\hspace{1cm} \beta_1=
102-\frac{38}{3}\,n_f.$ (8)

The $I\overline{I}$-action, $S^{(I\overline{I})}(\xi )$, as well its $\xi$-derivatives, entering the expression (2) for the cross section, are calculated in the subroutine ACTION. For default settings of the contrôl flags in QIINIT (VALFLAG=.TRUE.), it is given by the exact valley form [2,3],

$\displaystyle S^{(I\overline{I})}(\xi )$ $\textstyle =$ $\displaystyle 1-\frac{12}{f(\xi )}
- \frac{96}{f(\xi )^2} +\frac{48}{f(\xi )^3}...
... 3f(\xi )+8\right]
\ln\left[ \frac{1}{2\xi }\bigl( f(\xi ) +4\bigr)\right] \, ,$ (9)
$\displaystyle f(\xi )$ $\textstyle =$ $\displaystyle \xi^2+\sqrt{\xi^2-4}\xi-4 \, .$ (10)

The fermionic overlap $\omega (\xi)$ is calculated in the subroutine OMEGA, which uses a simple but accurate approximation for the exact result from Ref. [1],

\begin{displaymath}
\omega (\xi )= \frac{4}{(\xi +1/2)^{3/2}}.
\end{displaymath} (11)

The system (3) and (4) of saddle point equations is treated as follows: In a first step, it is solved explicitly for $\rho_\ast$ in terms of $\xi_\ast$,

\begin{displaymath}
v_\ast \equiv Q^\prime \rho_\ast
= 2\, D(\tilde{S})\,
W\le...
...}}{D(\tilde{S})}
\right]
\right\}}
{2\,D(\tilde{S})}
\right) ,
\end{displaymath} (12)

where $W$ denotes the Lambert $W$-function, i.e. the solution of $W(x)\exp(W(x))=x$. The latter is provided by the function LAMBERTW. The saddle-point $\xi_\ast ({x^\prime},
Q^\prime/\Lambda^{(n_f)}_{\overline{\rm MS}}, \mu_r/Q^\prime )$ is then found by inserting Eq. (12) into
\begin{displaymath}
{x^\prime}= \frac{(\xi_\ast -2)}
{(\xi_\ast +2)+4 \tilde{S}(\tilde{S}-2 v_\ast)/v^{\ast\,2} } ,
\end{displaymath} (13)

which is equivalent to Eq. (4), and solving numerically for $\xi_\ast$. This is done by calling the function XI. The numerical solution $\xi_\ast ({x^\prime},
Q^\prime/\Lambda^{(n_f)}_{\overline{\rm MS}}, \mu_r/Q^\prime )$ can then be inserted into Eq. (12) to obtain $v_\ast
({x^\prime},Q^\prime/\Lambda^{(n_f)}_{\overline{\rm MS}}, \mu_r/Q^\prime)$.

The values of $4\pi/\alpha_{\overline{\rm MS}}$ are calculated in the subroutine XQS.




next up previous
Next: Bibliography Up: QCDINS homepage Previous: Package description

A. Ringwald and F. Schrempp

1999-08-21