next up previous
Next: Bibliography Up: QCDINS homepage Previous: Package description

SUBROUTINE QIPSWT(PSWGT) - Generate kinematic weight for given phase space configuration




In this subroutine1 an energy-weight factor $w$ corresponding to the leading-order matrix elements squared [1] is calculated: Each outgoing quark with four-momentum $p_q$ is weighted by its energy $p_q^t$, each outgoing gluon with four-momentum $p_k$ by its energy squared $p_k^{t\,2}$, such that

\begin{displaymath}
w = \prod_{q=1}^{2n_f-1} p_q^t\
\prod_{k=1}^{n_g} p_k^{t\,2} \, .
\end{displaymath} (1)

It is easy to show that the weight (1) takes is maximum for the following phase space configuration,
\begin{displaymath}
p_q^t =\frac{W_i}{2\,(n_g+n_f)-1}\ \forall\ q\in
\{1,\ldots...
...c{W_i}{2\,(n_g+n_f)-1}\ \forall\ k\in
\{ 1,\ldots ,n_g\} \, ,
\end{displaymath} (2)

where
\begin{displaymath}
W_i = \sum_{q=1}^{2n_f-1} p_q^t +
\sum_{k=1}^{n_g} p_k^t
\end{displaymath} (3)

denotes the instanton CM energy. The maximum weight itself is given by
\begin{displaymath}
w_{\rm max}=2^{2\,n_g}
\left[ \frac{W_i}{2\,(n_g+n_f)-1}\right]^{2\,(n_g+n_f)-1} ,
\end{displaymath} (4)

The output variable PSWGT of the subroutine QIPSWT is the relative weight
\begin{displaymath}
w_{\rm rel} = w/w_{\rm max} \, .
\end{displaymath} (5)




next up previous
Next: Bibliography Up: QCDINS homepage Previous: Package description

A. Ringwald and F. Schrempp

1999-08-21