up previous
Up: QCDINS homepage Previous: Package description

DOUBLE PRECISION FUNCTION XI(XPR,XI_MIN,XI_MAX,XQ,XMU,NF,LOOPFL) - Saddle point calculation of conformal $I\overline{I}$-distance $\xi$




In this routine the saddle point value of the conformal $I\overline{I}$-separation ${\rm XI}=\xi_\ast$ is calculated as a function of ${\rm XPR}={x^\prime}$, ${\rm XQ}=4\pi/\alpha_{\overline{\rm MS}}(Q^\prime )$, ${\rm XMU}=4\pi/\alpha_{\overline{\rm MS}}(\mu_r )$ and ${\rm NF}=n_f$. The routine uses an interpolation in the range from ${\rm XI\_MIN}$ to ${\rm XI\_MAX}$ to invert the relation ${x^\prime}={x^\prime}(\xi_\ast,\ldots)$ (see Eq. (9) below).

The system

$\displaystyle \frac{1}{2}\frac{\sqrt{\frac{1-{x^\prime}}{{x^\prime}}}}
{\sqrt{\...
...\left(\rho_\ast\mu_r\right)\right)
\frac{dS^{(I\overline{I})}}{d\xi}(\xi_\ast )$ $\textstyle =$ $\displaystyle 0 \,,$ (1)
$\displaystyle \left(
\frac{1}{2}\,\sqrt{\frac{1-{x^\prime}}{{x^\prime}}} \sqrt{...
...ht) Q^\prime\rho_\ast+
\Delta_1\beta_0 S^{(I\overline{I})}(\xi_\ast )
-\Delta_2$ $\textstyle =$ $\displaystyle 0 \,,$ (2)

of saddle point equations, with
$\displaystyle \Delta_1$ $\textstyle \equiv$ $\displaystyle 1+\frac{\beta_1}{\beta_0}
\frac{\alpha_{\overline{\rm MS}}(\mu_r)...
...ex}
\Delta_2\equiv 12\,\beta_0
\frac{\alpha_{\overline{\rm MS}}(\mu_r)}{4\pi} ,$ (3)
$\displaystyle \beta_0$ $\textstyle =$ $\displaystyle 11-\frac{2}{3}n_f;
\hspace{1cm} \beta_1=
102-\frac{38}{3}\,n_f,$ (4)

is treated as follows:

In a first step, it is solved explicitly for $\rho_\ast$ in terms of $\xi_\ast$,

\begin{displaymath}
v_\ast \equiv Q^\prime \rho_\ast
= 2\, D(\tilde{S})\,
W\le...
...}}{D(\tilde{S})}
\right]
\right\}}
{2\,D(\tilde{S})}
\right) ,
\end{displaymath} (5)

where
\begin{displaymath}
\tilde{S}(\xi_\ast )\equiv \Delta_1 \beta_0 S^{(I\overline{I...
...=\frac{4\pi}
{\alpha_{\overline{\rm MS}}\left(\mu _r \right)},
\end{displaymath} (6)

and $W$ denotes the Lambert $W$-function, i.e. the solution of $W(x)\exp(W(x))=x$. The latter is provided by the function LAMBERTW, whereas the $I\overline{I}$-action is calculated in the routine ACTION. Using the 2-loop scale transformation law,
\begin{displaymath}
X(Q^\prime )-X(\mu_r ) = 2\,\beta_0\ln \left(\frac{Q^\prime}...
...ta_1}{\beta_0}}{X(Q^\prime)+\frac{\beta_1}{\beta_0}}
\right) ,
\end{displaymath} (7)

one may eliminate the explicit dependence of $v_\ast$ on $Q^\prime/\mu_r$ in favour of an $X(Q^\prime )$ dependence, with
$\displaystyle {
v_\ast (\xi_\ast, X(Q^\prime ), X(\mu_r )) =}$
    $\displaystyle 2\, D(\tilde{S})\,
W\left(
\frac{
\exp\left\{
\frac{1}{2}\frac{\t...
...
+\frac{1}{2}\frac{X(Q^\prime )}{\beta_0}
\right\}}
{2\,D(\tilde{S})}
\right) .$  

In the second step, the expression Eq. (8) for $v_\ast$ is inserted into

\begin{displaymath}
{x^\prime}= \frac{(\xi_\ast -2)}
{(\xi_\ast +2)+4 \tilde{S}(...
...^{\ast\,2} }
= {\rm funct}\,(\xi_\ast,X(Q^\prime),X(\mu_r )),
\end{displaymath} (9)

which is equivalent to Eq. (2). In the present routine, the inversion of Eq. (9) to give the saddle point solution $x_\ast ({x^\prime},X(Q^\prime),X(\mu_r ))$ is done by interpolation.

In a last step, the solution $\xi_\ast ({x^\prime},X(Q^\prime ), X(\mu_r) )$ can be inserted into Eq. (8) to obtain $v_\ast
({x^\prime},X(Q^\prime ), X(\mu_r))$.


up previous
Up: QCDINS homepage Previous: Package description

A. Ringwald and F. Schrempp

1999-08-21